Toggle light / dark theme

A batch of single-cell protein has been produced by using electricity and carbon dioxide in a joint study by the Lappeenranta University of Technology (LUT) and VTT Technical Research Centre of Finland. Protein produced in this way can be further developed for use as food and animal feed. The method releases food production from restrictions related to the environment. The protein can be produced anywhere renewable energy, such as solar energy, is available.

“In practice, all the raw materials are available from the air. In the future, the technology can be transported to, for instance, deserts and other areas facing famine. One possible alternative is a home reactor, a type of domestic appliance that the consumer can use to produce the needed protein,” explains Juha-Pekka Pitkänen, Principal Scientist at VTT.

Along with food, the researchers are developing the protein to be used as animal feed. The protein created with electricity can be used as a fodder replacement, thus releasing land areas for other purposes, such as forestry. It allows food to be produced where it is needed.

Read more

We are more than the sum of our genes. Epigenetic mechanisms modulated by environmental cues such as diet, disease or lifestyle take a major role in regulating the DNA by switching genes on and off. It has been long debated if epigenetic modifications accumulated throughout the entire life can cross the border of generations and be inherited to children or even grand children. Now researchers from the Max Planck Institute of Immunobiology and Epigenetics in Freiburg show robust evidence that not only the inherited DNA itself but also the inherited epigenetic instructions contribute in regulating gene expression in the offspring. Moreover, the new insights by the Lab of Nicola Iovino describe for the first time biological consequences of this inherited information. The study proves that mother’s epigenetic memory is essential for the development and survival of the new generation.

Humans have than 250 different cell types. They all contain the exact same DNA bases in exactly the same order; however, liver or nerve cells look very different and have different skills. What makes the difference is a process called epigenetics. Epigenetic modifications label specific regions of the DNA to attract or keep away proteins that activate genes. Thus, these modifications create, step by step, the typical patterns of active and inactive DNA sequences for each cell type. Moreover, contrary to the fixed sequence of ‘letters’ in DNA, can also change throughout life and in responses to environment or lifestyle. For example, smoking changes the epigenetic makeup of lung cells, eventually leading to cancer. Other influences of external stimuli like stress, disease or diet are also supposed to be stored in the of cells.

It has long been thought that these epigenetic modifications never cross the border of generations. Scientists assumed that epigenetic memory accumulated throughout life is entirely cleared during the development of sperms and egg cells. Just recently a handful of studies stirred the scientific community by showing that epigenetic marks indeed can be transmitted over generations, but exactly how, and what effects these genetic modifications have in the offspring is not yet understood. “We saw indications of intergenerational inheritance of epigenetic information since the rise of the epigenetics in the early nineties. For instance, epidemiological studies revealed a striking correlation between the food supply of grandfathers and an increased risk of diabetes and cardiovascular disease in their grandchildren.

Read more

Interesting results in mice but don’t jump on the bandwagon yet.


Fisetin is a naturally occurring plant polyphenol from the flavonoid group, similar to quercetin. It is present in many plants, where it acts as a colouring agent. It is also found in many fruits and vegetables, such as strawberries, apples, persimmons, onions, and cucumbers.

It has also been found to be a senolytic compound able to clear senescent cells, at least it does in vitro studies in a petri dish[1]. The clearance of dysfunctional senescent cells is one of the repair based approaches proposed by the SENS Research Foundation to prevent or reverse age-related diseases.

Before you jump on the bandwagon

We see this every time a new compound or supplement is in the news: people rush out to buy it before sufficient research has been done. We should be cautious here, and before we spend our hard-earned money on yet another supplement, we should be mindful that there is no evidence that fisetin has a senolytic effect in mice other than in cell cultures.

Read more

For example, in 1994 Calgene won approval to sell the Flavr Savr tomato. To make a Flavr Savr, scientists genetically modified a garden variety tomato with aminoglycoside 3-phosphotransferase II, a compound that kept the fruit from rotting.

The tinkering sabotaged the process that makes tomatoes turn squishy. But the less-squishy tomatoes never did catch on with a skeptical public. The company was later sold to Monsanto.


It changed everything.

With CRISPR, scientists can literally edit organisms, removing the bits that lead to unfavorable outcomes.

Ethicists worry about a rush toward designer babies. And there have been some disturbing developments on that end in China. However, the real opportunity in the near term has always been agriculture.

Read more

The Eindhoven High Tech Campus, a 90-minute train ride south of Amsterdam, consists of two rows of nondescript mid-rise office buildings on either side of a wide, tree-lined road. In typical Dutch fashion, there’s more parking for bikes than cars, and the campus is flanked by stretches of neatly-maintained green fields and canals.

The place doesn’t have an especially high-tech feel to it. But on the third floor of a building near the end of the road, a division of Philips Lighting called GrowWise is using technology to tackle a crucial question: what are we going to eat once there are over nine billion people on Earth?

GrowWise is a vertical farming research facility, and in conjunction with Dutch fresh food distributor Staay Food Group, it’s laying the groundwork for the first commercial vertical farm in Europe, slated to open north-east of Amsterdam in a town called Dronten later this year.

Read more

The toilet-paper principle suggests that we should be paying as much attention to the cheapest technologies as to the most sophisticated. One candidate: cheap sensors and cheap internet connections. There are multiple sensors in every smartphone, but increasingly they’re everywhere, from jet engines to the soil of Californian almond farms — spotting patterns, fixing problems and eking out efficiency gains.


Forget flying cars or humanoid robots. The most disruptive inventions are often cheap, simple and easy to overlook.

Read more