Toggle light / dark theme

Anders Sandberg, University of Oxford.

One of the deepest realizations of the scientific understanding of the world that emerged in the 18th and 19th century is that the world is changing, that it has been radically different in the past, that it can be radically different in the future, and that such changes could spell the end of humanity as we know it. An added twist arrived in the 20th century: we could ourselves be the cause of our demise. In the late 20th century an interdisciplinary field studying global catastrophic and existential risks emerged, driven by philosophical concern about the moral weight of such risks and the realization that many such risks show important commonalities that may allow us as a species to mitigate them. For example, much of the total harm from nuclear wars, supervolcanic eruptions, meteor impacts and some biological risks comes from global agricultural collapse. This talk is going to be an overview of the world of low-probability, high-impact risks and their overlap with questions of complexity in the systems generating or responding to them. Understanding their complex dynamics may be a way of mitigating them and ensuring a happier future.

Follow us on social media:
https://twitter.com/sfiscience.
https://instagram.com/sfiscience.
https://facebook.com/santafeinstitute.
https://facebook.com/groups/santafeinstitute.
https://linkedin.com/company/santafeinstitute.

https://complexity.simplecast.com.
https://aliencrashsite.org

https://www.youtube.com/watch?v=3VDsguNyJ0c&feature=share

Growing veggies on a thin film that allows nutrients and water to pass through while blocking viruses and bacteria.


[Skip Intro] 0:46
Watch more full episodes of Japan’s Top Inventions on NHK WORLD-JAPAN!
https://www3.nhk.or.jp/nhkworld/en/ondemand/program/video/topinventions/?cid=wohk-yt-2108-jti034-hp.
More quality content available on NHK WORLD-JAPAN!
https://www3.nhk.or.jp/nhkworld/en/ondemand/video/?cid=wohk-yt-2108-jti034-hp.

A Japanese farming technique using film shows potential for crop cultivation in arid regions and areas affected by soil degradation.

Ron Hetrick, a labor economist at EMSI and one of the report’s authors, said that as a whole the industry is not yet able to bring robotics in at a meaningful level. But future restaurant business models will continue to evolve as labor challenges remain. He expects business models could change so that the amount of service customers need drops.

“You will probably lose out on the amount of restaurants that you can go sit in,” Hetrick said.

Miso’s Bell said that software engineers are always in high demand, but the company is facing “normal challenges” in terms of worker availability. The current supply chain crunch is more of an immediate concern.

Title: A data analysis of the first hermetic seal of SAM–a hi-fidelity, hybrid physicochemical and bioregenerative human habitat analog at the Biosphere 2

Track Code: AM-8

Abstract:
SAM is a Space Analog for the Moon and Mars. This hi-fidelity, hermetically sealed habitat analog and research center is composed of a living quarters for four crew, workshop, dual airlocks, and greenhouse with temperature, humidity, and carbon dioxide level controls. SAM incorporates a half acre indoor/outdoor Mars yard with scaled crater, synthetic lava tube, and gravity offset rig for use in sealed pressure suits. SAM leverages the world class expertise and facilities at the University of Arizona’s Biosphere 2 and the Controlled Environment Agriculture Center (CEAC). As with other analogs, SAM welcomes research teams from around the world in an effort to inform near-future, long-duration human habitation of the Moon and Mars. With the close of June 2,021 a six months refurbishing of the 1987 prototype for the Biosphere 2 Test Module was completed. A crew of five were sealed inside for four hours. This was the first hermetic seal of this iconic vessel in three decades. The paper summarizes the data and findings pertaining to this closure, with review of the internal atmospheric pressure, CO2, O2, humidity and temperature data, including the effect of activation of a CO2 scrubber built by Paragon SDC for NASA.

From the 24th Annual International Mars Society Convention, held as a Virtual Convention worldwide on the Internet from October 14–17, 2021. The four-day International Mars Society Convention, held every year since 1,998 brings together leading scientists, engineers, aerospace industry representatives, government policymakers and journalists to talk about the latest scientific discoveries, technological advances and political-economic developments that could help pave the way for a human mission to the planet Mars.

Conference Papers and some presentations will be available on www.MarsPapers.org.

For more information on the Mars Society, visit our website at www.MarsSociety.org.

Circa 2016 Basically means we can see contaminated water easier.


Detection and quantification of contaminants or pollutants in surface waters is of great importance to ensure safety of drinking water and for the aquatic environment1,2,3,4,5,6. Metaldehyde (CH3CHO)4 is a cyclic tetramer of acetaldehyde and is used extensively around the world as a molluscicide in agriculture for the control of slugs to protect crops. Large amounts of metaldehyde residues (from ‘slug pellets’) become mobilized, especially during periods of rainfall, seeping into reservoirs, rivers and groundwater, from which drinking water is sourced. Although metaldehyde has low toxicity, cases of metaldehyde poisoning and death in both humans and animals have been reported6,7,8. The United States Environmental Protection Agency (EPA) re-registered metaldehyde as a ‘restricted use pesticide’ and required risk-reduction measures to be adopted due to the potential short-term and long-term effects on wildelife9,10. The World Health Organization (WHO) classifies metaldehyde as a “moderately hazardous” pesticide (class II)11. In Europe, the European Commission has adopted a directive that restricts pesticides levels to 0.1 μg/L in drinking water12,13. Water companies and environmental agencies are under increasing pressure to routinely monitor levels of metaldehyde residues in water courses as part of their legal obligation14. As such there is an increasing need to develop effective analytical methods for detecting and quantifying metaldehyde in water samples at the source. In particular in-situ monitoring is required to ensure water management practices are based on empirical, up-to-date information which provides a better understanding of competing factors, risk and requirement.

Rapid analytical methods for in-situ analysis of metaldehyde in water, if available, would provide critical information on water quality for water companies and regulation bodies to manage exposures. Quantitative analysis of metaldehyde has been reported using various ex-situ methods based on solid-phase extraction8,15 followed by gas chromatography (GC) or high performance liquid chromatography (HPLC) with mass spectrometry (MS)7,14,15,16,17,18. However, each of these analytical methods involves extensive sample preparation including extraction, separation, and derivatization, resulting in increased cost and time of analysis. As will be demonstrated in this study, ambient ionization (AI) combined with tandem mass spectrometry (MS/MS) can overcome such limitations19,20,21,22.

AI is a form of ionization that is performed on unmodified samples in open air and the method is capable of providing almost instantaneous data while minimizing sample preparation22,23,24,25,26,27,28,29. Some of the most popular AI techniques include desorption electrospray ionization (DESI)30, extractive electrospray ionization (EESI)31,32,33,34,35,36, desorption atmospheric pressure chemical ionization (DAPCI)37,38,39, and direct analysis in real time (DART)40,41. AI-MS shows promise as an analytical tool for in-situ applications and has been demonstrated in a variety of fields where timely intervention is highly desirable such as: homeland security23, food safety42, pharmaceutical drug development43, and environmental monitoring44. There are several advantages to using in-situ AI methods capable of onsite analysis.

Russia has registered the world’s first COVID-19 vaccine for animals, the country’s agricultural regulator said on Wednesday.

Clinical trials of the vaccine — called Carnivac-Cov — started last October and involved dogs, cats, Arctic foxes, minks, foxes and other animals, said Konstantin Savenkov, deputy head of Rosselkhoznadzor, according to a Reuters report.

Sri Lanka has become the latest victim of China’s toxic counterfeit culture. After receiving the first consignment of organic fertilizers from China, the Sri Lankan agriculture ministry has found that 20,000 metric tons of fertilizers are toxic.

#Srilanka #China #Fertilizers.

About Channel:

WION-The World is One News, examines global issues with in-depth analysis. We provide much more than the news of the day. Our aim to empower people to explore their world. With our Global headquarters in New Delhi, we bring you news on the hour, by the hour. We deliver information that is not biased. We are journalists who are neutral to the core and non-partisan when it comes to the politics of the world. People are tired of biased reportage and we stand for a globalised united world. So for us the World is truly One.

Please keep discussions on this channel clean and respectful and refrain from using racist or sexist slurs as well as personal insults.

Check out our website: http://www.wionews.com.
Connect with us on our social media handles:
Facebook: https://www.facebook.com/WIONews.
Twitter: https://twitter.com/WIONews.

Fijitsu retrofitted one of it’s clean rooms in a vertical farm. The project was so successful, they discovered they could enter a new market segment and sell the systems themselves. I definately want one.

Like the giant monolith in Stanley Kubrick’s 2,001 this new head of lettuce is simultaneously a product of this factory’s past and the future. Fujitsu is a space-age R&D innovator with sprawling, specialized factories. But several of its facilities, including this one, went dark when the company tightened its belt and reorganized its product lines after the 2008 global financial crisis. Now in the aftermath, it has retrofitted this facilities to serve tomorrow’s vegetable consumers, who will pay for a better-than-organic product, and who enjoy a bowl of iceberg more if they know it was monitored by thousands of little sensors.


Like the giant monolith in Stanley Kubrick’s 2001, this new head of lettuce is simultaneously a product of this factory’s past and the future. Fujitsu is a space-age R&D innovator with sprawling, specialized factories. But several of its facilities, including this one, went dark when the company tightened its belt and reorganized its product lines after the 2008 global financial crisis. Now in the aftermath, it has retrofitted this facilities to serve tomorrow’s vegetable consumers, who will pay for a better-than-organic product, and who enjoy a bowl of iceberg more if they know it was monitored by thousands of little sensors.

A year into the project, Fujitsu is now producing between 2,500 and 3,000 heads of a lettuce a day that sell for three times the normal price: The company is using its hydroponic lettuce farm to showcase its “smart” farming technologies, in the hopes of nurturing a new agribusiness.

The project is the outgrowth of a company-wide reorganization following the 2008 financial crisis, after which Fujitsu decreased its number of product lines from nine to six. Originally built in 1,967 the building where the company is now growing lettuce was once the largest transistor factory in the world. Over the years, Fujitsu expanded, buying up three other buildings and the remainder of the industrial park, bringing its total footprint in the area to roughly 260,000 square meters.

Brilliant breakdown of a fascinating topic, this.


Use code WENDOVER14 for up to 14 FREE MEALS across your first 5 HelloFresh boxes plus free shipping at https://bit.ly/3cpIz8a.

Watch Extremities at http://youtube.com/extremities.

Buy a Wendover Productions t-shirt: https://standard.tv/collections/wendover-productions/products/wendover-productions-shirt.

Youtube: http://www.YouTube.com/WendoverProductions.
Instagram: http://Instagram.com/sam.from.wendover.
Twitter: http://www.Twitter.com/WendoverPro.
Sponsorship Enquiries: [email protected].
Other emails: [email protected].
Reddit: http://Reddit.com/r/WendoverProductions.

Writing by Sam Denby.
Research by Sam Denby and Tristan Purdy.
Editing by Alexander Williard.
Animation by Josh Sherrington.
Sound by Graham Haerther.
Thumbnail by Simon Buckmaster.