Toggle light / dark theme

According to the reputable Australian astro-enthusiast journal, SkyNews, a leading biologist says that it is surprising we have not already discovered extra-terrestrials that look like us — given the growing number of Earth-like planets now discovered by astronomers.

Planet_moonSimon Conway Morris, an evolutionary biologist suggests that aliens resembling humans must have evolved on other planets. He bases the claim on evidence that different species will independently develop similar features which means that life similar to that on Earth would also develop on equivalent planets.

The theory, known as convergence, says evolution is a predictable process which follows a rigid set of rules. Read the full story at Skynews

__________
Philip Raymond is Co-Chair of The Cryptocurrency Standards
Association [crypsa.org] and chief editor at AWildDuck.com

Can an emotional component to artificial intelligence be a benefit?

Robots with passion! Emotional artificial intelligence! These concepts have been in books and movies lately. A recent example of this is the movie Ex Machina. Now, I’m not an AI expert, and cannot speak to the technological challenges of developing an intelligent machine, let alone an emotional one. I do however, know a bit about problem solving, and that does relate to both intelligence and emotions. It is this emotional component of problem solving that leads me to speculate on the potential implications to humanity if powerful AI’s were to have human emotions.

Why the question about emotions? In a roundabout way, it has to do with how we observe and judge intelligence. The popular way to measure intelligence in a computer is the Turing test. If it can fool a person through conversation, into thinking that the computer is a person, then it has human level intelligence. But we know that the Turing test by itself is insufficient to be a true intelligence test. Sounding human during dialog is not the primary method we use to gauge intelligence in other people or in other species. Problem solving seems to be a reliable test of intelligence either through IQ tests that involve problem solving, or through direct real world problem solving.

As an example of problem solving, we judge how intelligent a rat is by how fast it can navigate a maze to get to food. Let’s look at this in regards to the first few steps in problem solving.

Fundamental to any problem solving, is recognizing that a problem exists. In this example, the rat is hungry. It desires to be full. It can observe its current state (hungry) and compare it with its desired state (full) and determine that a problem exists. It is now motivated to take action.

Desire is intimately tied to emotion. Since it is desire that allows the determination of whether or not a problem exists, one can infer that emotions allow for the determination that a problem exists. Emotion is a motivator for action.

Once a problem is determined to exist, it is important to define the problem. In this simple example this step isn’t very complex. The rat desires food, and food is not present. It must find food, but its options for finding food are constrained by the confines of the maze. But the rat may have other things going on. It might be colder than it would prefer. This presents another problem. When confronted with multiple problems, the rat must prioritize which problem to address first. Problem prioritization again is in the realm of desires and emotions. It might be mildly unhappy with the temperature, but very unhappy with its hunger state. In this case one would expect that it will maximize its happiness by solving the food problem before curling up to solve its temperature problem. Emotions are again in play, driving behavior which we see as action.

The next steps in problem solving are to generate and implement a solution to the problem. In our rat example, it will most likely determine if this maze is similar to ones it has seen in the past, and try to run the maze as fast as it can to get to the food. Not a lot of emotion involved in these steps with the possible exception of happiness if it recognizes the maze. However, if we look at problems that people face, emotion is riddled in the process of developing and implementing solutions. In the real world environment, problem solving almost always involves working with other people. This is because they are either the cause of the problem, or are key to the problem’s solution, or both. These people have a great deal of emotions associated with them. Most problems require negation to solve. Negotiation by its nature is charged with emotion. To be effective in problem solving a person has to be able to interpret and understand the wants and desires (emotions) of others. This sounds a lot like empathy.

Now, let’s apply the emotional part of problem solving to artificial intelligence. The problem step of determining whether or not a problem exists doesn’t require emotion if the machine in question is a thermostat or a Roomba. A thermostat doesn’t have its own desired temperature to maintain. Its desired temperature is determined by a human and given to the thermostat. That human’s desires are a based on a combination of learned preferences from personal experience, and hardwired preferences based on millions of years of evolution. The thermostat is simply a tool.

Now the whole point behind an AI, especially an artificial general intelligence, is that it is not a thermostat. It is supposed to be intelligent. It must be able to problem solve in a real world environment that involves people. It has to be able to determine that problems exists and then prioritize those problems, without asking for a human to help it. It has to be able to socially interact with people. It must identify and understand their motivations and emotions in order to develop and implement solutions. It has to be able to make these choices which are based on desires, without the benefit of millions of years of evolution that shaped the desires that we have. If we want it to be able to truly pass for human level intelligence, it seems we’ll have to give it our best preferences and desires to start with.

A machine that cannot chose its goals, cannot change its goals. A machine without that choice, if given the goal of say maximizing pin production, will creatively and industriously attempt to convert the entire planet into pins. Such a machine cannot question instructions that are illegal or unethical. Here lies the dilemma. What is more dangerous, the risk that someone will program an AI that has no choice, to do bad things, or the risk that an AI will decide to do bad things on its own?

No doubt about it, this is a tough call. I’m sure some AIs will be built with minimal or no preferences with the intent that it will be simply a very smart tool. But without giving an AI a set of desires and preferences to start with that are comparable to those of humans, we will be interacting with a truly alien intelligence. I for one, would be happier with an AI that at least felt regret about killing someone, than I would be with an AI that didn’t.

Quoted: “Once you really solve a problem like direct brain-computer interface … when brains and computers can interact directly, to take just one example, that’s it, that’s the end of history, that’s the end of biology as we know it. Nobody has a clue what will happen once you solve this. If life can basically break out of the organic realm into the vastness of the inorganic realm, you cannot even begin to imagine what the consequences will be, because your imagination at present is organic. So if there is a point of Singularity, as it’s often referred to, by definition, we have no way of even starting to imagine what’s happening beyond that.”

Read the article here > http://www.theamericanconservative.com/dreher/silicon-valley-mordor/

Since ancient times people have been searching for the secret of immortality. Their quest has always been, without exception, about a physical item: a fountain, an elixir, an Alchemist’s remedy, a chalice, a pill, an injection of stem cells or a vial containing gene-repairing material. It has never been about an abstract concept.

Our inability to find a physical cure for ageing is explained by a simple fact: We cannot find it because it does not exist. It will never exist.

Those who believe that someday some guy is going to discover a pill or a remedy and give it to people so that we will all live forever are, regrettably, deluded.

I should highlight here that I refer to a cure for the ageing process in general, and not a cure for a specific medical disease. Biotechnology and other physical therapies are useful in alleviating many diseases and ailments, but these therapies will not be the answer to the basic biological process of ageing.

In a paper I published in the journal Rejuvenation Research I outline some of the reasons why I think biotechnology will not solve the ageing problem. I criticise projects such as SENS (which are based upon physical repairs of our ageing tissues) as being essentially useless against ageing. The editor’s rebuttal (being weak and mostly irrelevant) proved and strengthened my point. There are insurmountable basic psychological, anatomical, biological and evolutionary reasons why physical therapies against ageing will not work and will be unusable by the general public. Some of these reasons include pleiotropy, non-compliance, topological properties of cellular networks, non-linearity, strategic logistics, polypharmacy and tolerance, etc. etc.

So, am I claiming that we are doomed to live a life of age-related pathology and degeneration, and never be able to shake off the aging curse? No, far from it. I am claiming that it is quite possible, even inevitable, that ageing will be eliminated but this will not be achieved through a physical intervention based on bio-medicine or bio-technology. Ageing will be eliminated through fundamental evolutionary and adaptation mechanisms, and this process will take place independently of whether we want it or not.

It works like this: We now age and die because we become unable to repair random background damage to our tissues. Resources necessary for this have been allocated by the evolutionary process to our germ cell DNA (in order to assure the survival of the species) and have been taken away from our bodily cells. Until now, our environment was so full of dangers that it was more thermodynamically advantageous for nature to maintain us up to a certain age, until we have progeny and then die, allowing our progeny to continue life.

However, this is now changing. Our environment is becoming increasingly more secure and protective. Our technology protects us against dangers such as infections, famine and accidents. We become increasingly embedded into the network of a global techno-cultural society which depends upon our intelligence in order to survive. There will come a time when biological resources spent to bring up children would be better spent in protecting us instead, because it would be more economical for nature to maintain an existing, well-embedded human, rather than allow it to die and create a new one who would then need more resources in order to re-engage with the techno-cultural network. Disturbing the network by taking away its constituents and trying to re-engage new inexperienced ones is not an ideal action and therefore it will not be selected by evolution.Alchemist complex

The message is clear: You have more chances of defying ageing if, instead of waiting for someone to discover a pill to make you live longer, you become a useful part of a wider network and engage with a technological society. The evolutionary process will then ensure that you live longer-as long as you are useful to the whole.

Further reading
http://ieet.org/index.php/IEET/more/kyriazis20121031
https://lifeboat.com/blog/2013/12/the-seven-fallacies-of-aging
https://lifeboat.com/blog/2013/04/the-life-extension-hubris-why-biotechnology-is-unlikely-to-be-the-answer-to-ageing
http://www.ncbi.nlm.nih.gov/pubmed/25072550
http://arxiv.org/abs/1402.6910

Written By: — Singularity Hub
http://cdn.singularityhub.com/wp-content/uploads/2014/07/universe-comes-to-know-itself-1.jpg
In his latest video, host of National Geographic’s Brain Games and techno-poet, Jason Silva, explores the universe’s tendency to self-organize. Biology, he says, seems to have agency and directionality toward greater complexity, and humans are the peak.

“It’s like human beings seem to be the cutting edge,” Silva says. “The evolutionary pinnacle of self-awareness becoming aware of its becoming.”

Read more

Brent Swancer — Mysterious Universe

monk-featured
The world of comics and movies is full of superheroes and characters with abilities that transcend what is possible for the typical person. We enjoy these stories because we can escape our reality and imagine what it would be like to have amazing powers of our own. Yet, a gifted few in this world don’t have to imagine because like the superheroes in comics and movies, they too have extraordinary powers beyond normal humans.

Here we will look at a selection of real world people with remarkable powers and abilities that surpass those of us mere mortals.

Read More

Uploading the content of one’s mind, including one’s personality, memories and emotions, into a computer may one day be possible, but it won’t transfer our biological consciousness and won’t make us immortal.

Uploading one’s mind into a computer, a concept popularized by the 2014 movie Transcendence starring Johnny Depp, is likely to become at least partially possible, but won’t lead to immortality. Major objections have been raised regarding the feasibility of mind uploading. Even if we could surpass every technical obstacle and successfully copy the totality of one’s mind, emotions, memories, personality and intellect into a machine, that would be just that: a copy, which itself can be copied again and again on various computers.

THE DILEMMA OF SPLIT CONSCIOUSNESS

Neuroscientists have not yet been able to explain what consciousness is, or how it works at a neurological level. Once they do, it is might be possible to reproduce consciousness in artificial intelligence. If that proves feasible, then it should in theory be possible to replicate our consciousness on computers too. Or is that jumpig to conclusions ?

Once all the connections in the brain are mapped and we are able to reproduce all neural connections electronically, we will also be able run a faithful simulation of our brain on a computer. However, even if that simulation happens to have a consciousness of its own, it will never be quite like our own biological consciousness. For example, without hormones we couldn’t feel emotions like love, jealously or attachment. (see Could a machine or an AI ever feel human-like emotions ?)

Some people think that mind uploading necessarily requires to leave one’s biological body. But there is no conscensus about that. Uploading means copying. When a file is uploaded on the Internet, it doesn’t get deleted at the source. It’s just a copy.

The best analogy to understand that is cloning. Identical twins are an example of human clones that already live among us. Identical twins share the same DNA, yet nobody would argue that they also share a single consciousness.

It will be easy to prove that hypothesis once the technology becomes available. Unlike Johnny Depp in Transcend, we don’t have to die to upload our mind to one or several computers. Doing so won’t deprive us of our biological consciousness. It will just be like having a mental clone of ourself, but we will never feel like we are inside the computer, without affecting who we are.

If the conscious self doesn’t leave the biologically body (i.e. “die”) when transferring mind and consciousness, it would basically mean that that individual would feel in two places at the same time: in the biological body and in the computer. That is problematic. It’s hard to conceive how that could be possible since the very essence of consciousness is a feeling of indivisible unity.

If we want to avoid this problem of dividing the sense of self, we must indeed find a way to transfer the consciousness from the body to the computer. But this would assume that consciousness is merely some data that can be transferred. We don’t know that yet. It could be tied to our neurons or to very specific atoms in some neurons. If that was the case, destroying the neurons would destroy the consciousness.

Even assuming that we found a way to transfer the consciousness from the brain to a computer, how could we avoid consciousness being copied to other computers, recreating the philosophical problem of splitting the self. That would actually be much worse since a computerized consciousness could be copied endless times. How would you then feel a sense of unified consciousness ?

Since mind uploading won’t preserve our self-awareness, the feeling that we are ourself and not someone else, it won’t lead to immortality. We’ll still be bound to our bodies, but life expectancy for transhumanists and cybernetic humans will be considerably extended.

IMMORTALITY ISN’T THE SAME AS EXTENDED LONGEVITY

Immortality is a confusing term since it implies living forever, which is impossible since nothing is eternal in our universe, not even atoms or quarks. Living for billions of years, while highly improbable in itself, wouldn’t even be close to immortality. It may seem like a very large number compared to our short existence, but compared to eternity (infinite time), it isn’t much longer than 100 years.

Even machines aren’t much longer lived than we are. Actually modern computers tend to have much shorter life spans than humans. A 10-year old computer is very old indeed, as well as slower and more prone to technical problems than a new computer. So why would we think that transferring our mind to a computer would grant us greatly extended longevity ?

Even if we could transfer all our mind’s data and consciousness an unlimited number of times onto new machines, that won’t prevent the machine currently hosting us from being destroyed by viruses, bugs, mechanical failures or outright physical destruction of the whole hardware, intentionally, accidentally or due to natural catastrophes.

In the meantime, science will slow down, stop and even reverse the aging process, enabling us to live healthily for a very long time by today’s standards. This is known as negligible senescence. Nevertheless, cybernetic humans with robotic limbs and respirocytes will still die in accidents or wars. At best we could hope to living for several hundreds or thousands years, assuming that nothing kills us before.

As a result, there won’t be that much differences between living inside a biological body and a machine. The risks will be comparable. Human longevity will in all likelihood increase dramatically, but there simply is no such thing as immortality.

CONCLUSION

Artificial Intelligence could easily replicate most of processes, thoughts, emotions, sensations and memories of the human brain — with some reservations on some feelings and emotions residing outside the brain, in the biological body. An AI might also have a consciousness of its own. Backing up the content of one’s mind will most probably be possible one day. However there is no evidence that consciousness or self-awareness are merely information that can be transferred since consciousness cannot be divided in two or many parts.

Consciousness is most likely tied to neurons in a certain part of the brain (which may well include the thalamus). These neurons are maintained throughout life, from birth to death, without being regenerated like other cells in the body, which explains the experienced feeling of continuity.

There is not the slightest scientific evidence of a duality between body and consciousness, or in other words that consciousness could be equated with an immaterial soul. In the absence of such duality, a person’s original consciousness would cease to exist with the destruction of the neurons in his/her brain responsible for consciousness. Unless one believes in an immaterial, immortal soul, the death of one’s brain automatically results in the extinction of consciousness. While a new consciousness could be imitated to perfection inside a machine, it would merely be a clone of the person’s consciousness, not an actual transfer, meaning that that feeling of self would not be preserved.

———

This article was originally published on Life 2.0.

Since the first modern Olympic Games bowed in Athens in 1896, humanity has gradually integrated the developments of science and technology into the realm of competitive sport.

The various attempts to slow the utilization of advanced materials, pharmaceuticals, biotechnology, and robotics is akin to keeping certain gender or ethnic groups out of the games. Not just discrimination, but impeding the flow of progress.

transhuman olympicsIf the ultimate goal of world-level competition is advancement of human physical ability, then athletes, coaches, physicians, and biotech engineers should be able to choose the very best tactics and strategies to achieve that goal.

A Transhuman Olympics would be wildly entertaining, but would also spur the development of biotechnology at a pace that public and private science could never keep up with. While the ethics of such an event might be hotly contested, the benefits to humankind would be lasting and far reaching.

Competitors involved would sign a medical waiver and hold harmless agreement. Education for both athletes and trainers would be mandatory so that participants and competitors understand the risks. Athletes in particular would have to attest that they are willingly participating in the games and that at the time of their consent to do so, they were of sound mind.

Performance enhancing substances — anabolic steroids, human growth hormones — would be permitted. Safer formulations would be encouraged. Experimentation would also be encouraged, insofar as it would drive the development of substances with less extreme, more commercial applications, outside of the games.

Biotechnology augmentation and bioengineered device integration would also be advised. Biotech is still in its relative infancy and the mainstream medical benefit for technology spun-off from this kind of competitive arena would be amazingly valuable.

In short, virtually any edge that provides enhanced performance times, distances, heights, or otherwise advances human competitive ability — be it mechanical, pharmaceutical, biotechnological, or genetic — would be considered fair game.

Boredom and sport would never again occur together in the same sentence. The performance-enhancing scandal that supposedly hurt the image of baseball in the late 1990s, led to new records from players like Mark McGwire, Sammy Sosa, and Roger Clemens, as well as a substantial lift in audience attention at the world level.

Some of the most competitive and gifted athletes in baseball watched as their reputations were dragged through the proverbial mud, as members of US Congress and the Federal judiciary presided over efforts to jail both trainers and athletes alike.

In reality, the use of performance enhancing substances in baseball goes back to 1889, when pitcher Pud Galvin used, and vocally endorsed, Brown-Séquard Elixir, a monkey-sourced testosterone supplement.

“Doping,” as it is commonly referred to, remains an American taboo subject.

The Transhuman Olympics would provide a venue for science to be more competitive and for athletes and trainers to take measures that they deem befitting to secure the best performance results.

Rather than laboratory-based timelines — often handled in academic settings, with limited access to financial resources — scientific improvements would need to find practical applications in the real world. Research efforts would have to provide meaningful, actionable improvements to athletic performance, within real world timeframes.

Imagine for a moment the incredible entertainment value. Perhaps countries with the most money just emerge victorious. Perhaps smaller scientific efforts with less access to resources would be forced to find novel innovations to gain a competitive advantage.

Watching athletes push the limits of humanity to achieve new records and break through established competitive plateaus is a fundamental facet of human evolution. The Transhuman Olympics would simply better facilitate that process.

Over time, the opportunity to invent new sports based on emerging capabilities and new technological developments would emerge. When the 1896 Olympics revived the ancient Olympic tradition, only one sport was excluded from the games (for you history buffs, the sport was pankration, a mild mixed martial art). However, with new technology and advanced human capability comes new competitive territory. Imagine a real-life Icarus competing with other airborne humans. Underwater games or sports in low-Earth orbit — the competitive horizon is endless.

transhuman olympics

Robotic elements, like chaser drones, helping athletes to see around corners or from other perspectives would be spectacular. Imagine force multipliers to provide boosts of strength or improve the strength and resilience of joints, muscles, tendons, and/or ligaments.

Once tested and proven in the venue of competitive sport, these technologies would have the widespread potential for mainstream medical adoption. Think of elderly patients who have trouble walking or individuals dealing with neurodegenerative disorders, now empowered thanks to the sacrifices and risks taken on by these gladiators of evolved sport.

Until modern society overcomes its resistance to unencumbered, more loosely regulated sporting events, the Transhuman Olympics would need to be held in a country with fewer controlled substance laws.

This country would likely receive a substantial windfall of medical tourism, so long as the technology being utilized was also developed there. Cuba springs first to mind but other present-day medical tourism destinations include Argentina, Brunei, Jordan, South Africa, Singapore, New Zealand and many others.

In modern Olympic competition, corporate sponsorship was first forbidden.

It wasn’t until 1972, when the medium of television opened up new channels for advertising, that corporate sponsorship began to emerge. In the Transhuman Olympics, corporate and/or government sponsorship would be essential and robustly encouraged.

With each passing Olympic games, the amount spent increases dramatically. Russia spent $51 billion on the 2014 games in Sochi, in the hopes of capturing and drawing the international spotlight.

In the Transhuman Olympics, the core benefits would include not only spectators and advertising sponsors, but tangible medical advancements and beneficial intellectual property.

We’re already living in the age of the technologically enhanced athlete.

LZR Racer swimsuits, made of woven elastane-nylon and buoyant polyurethane provided swimmers the ability to shave relatively substantial amounts of time from races. Those suits were banned in 2010, following the 2008 Beijing games.

The 1936 Olympics in Berlin showed Hitler that preconceived notions of superiority were no match for the power of diversity.

In 2012, for the first time since the inception of the International Olympic Committee, all countries participating in the Olympics sent delegations that included both male and female competitors. That same year, 204 countries sent competitors to the games.

Now that the human race has achieved an even playing field for global competition, the next step is technologically empowered, superhuman competitors.

Kindly join me in supporting the call for a Transhuman Olympics.

How has your work, your life, your humanity, been improved by the promise of Big Data?

What apps and online media do you use to upload personal and other info?

Singularity has flopped – that is to say, this week Johnny Depp’s new film Transcendence did not bring in as much as Pirates of the Caribbean. Though there may not have been big box office heat, there is heat behind the film’s subject: Big Data! Sure we miss seeing our affable pirate chasing treasure, but hats off to Mr. Depp who removed his Keith Richards make-up to risk chasing what might be the mightiest challenge of our century.

Singularity, coined by mathematician John von Neumann, is a heady mathematical concept tested by biotech predictions. Made popular by math and music wunderkindt turned gray hair guru of an AI movement Ray Kurzweil, Singularity is said to signify the increasing rate at which artificial intelligence will supersede human intelligence like a jealous sibling. Followers of the Singularity movement (yes, with guru comes followers) envision the time of override in the not to distant future with projections set early as 2017 and 2030. At these times, the dynamics of technology are said to set about a change in our biology, our civilization and “perhaps” nature itself. Within our current reach, we see signs of empowered tech acting out in the current human brain mapping quest and brain-computer interface systems. More to the point, there is an ever increasing onslaught of Google Alerts annoucing biotech enhancements with wearable tech. Yes indeed, here comes the age of smart prosthetics and our own AI upload of medical and personal data to the internet. Suddenly all those Selfies seem more than mere narcissistic postings against the imposing backdrop of Big Data.

Johnny Depp’s face says it all in Transcendence where Big Data determines our AI future wherein life as we know it, can and will exist online. Think beyond a 24/7 teenage plug into a smart phone or flash- driving Facebook entries. Think Neuromancer, VALIS, and Star Trek’s Borg — sci fi predecessors predicting memory transformations amounting to an existential reboot. Translated into the everyday, we’re talking more than just uploading your genetic code to 23andme. This is an imagined future where what we call “Me” will be psychologically and legally recognized as living online.

As a contemporary sci fi, Transcendence is filled with pentimento film tributes to Zombie and X-Men TakeOvers, Westerns and Romantic Tragedies. Pitting AI critics against AI visionaries, the film is a bioethics drama, where the prospect of creating online Selves will constitute a direct social threat with thoroughgoing eco consequences. At the center of the bioethics contest, we encounter the marriage and business partnership of Will and Eleanor Castor — the heroic scientist and the eco-activist whose death do us part vows are broken to unleash a future so thoroughly transformed by AI as to render biological existence “hacked” by internet code.

The romantic hubris of Transcendence is jolting with a Shakespearean twist: Dare to Upload yourself to the internet and threaten genealogy, global power. Wait, this is no Romeo and Juliet. Love and Death, Eros and Thanatos, as Herr Freud called it, stands at the center of this science fiction pivoting on Will Castor’s heroic martyrdom (played astutely by Johnny Depp). By the end of the film, we are forced to face the movie’s existential questions as moral and medical ones. With new sentient life living online, collective imagination for our biohumanity and ecosystem is left unhinged.

Transcendence Soundtrack
Image Credit: Transcendence, 2014 Original Soundtrack

While the film lifts common AI themes of transformed “self-awareness” and “identity,” the real AI deal breaker in Transcendence, and in our own lives, is Time – biological, ecological and geologic. Described as a sequential and cyclical process, Time frames our present experience, shaping both memory and imagination of that present experience. As my Buddhist philosophy professor use to say: “When you are waiting for your lover, 10 minutes feels like 1 hour; but when your lover arrives, 1 hour feels like 10 minutes.” Cognitive neuroscientists tell us that episodic memory is at once measurable and elusive of metrics — researchers can study the sequence of what we remember (like learning our ABC’s) but they struggle to discover how it feels to remember the alphabet.

Time after Will Castor’s AI is not waiting for cognitive neuroscience to catch up with a hacker’s race to design new codes, new systems, and new products for regenerating uberhuman biosystems. After all, AI Time presumes the speed of downloads to the Internet and programming APPs as if to emulate the speed of light.

Before Einstein, Neuroscience, the Internet and Apps, Time was once thought of in mythic, primal terms of genesis. In Indian cosmology, Siva, the God of Time, dances on the back of mother earth, moving us through karmic cycles of birth, life, death and rebirth. In the ancient Greco-Roman cosmos, Time is born from Chronos the three headed serpent that gives us earth, sky and the underworld. Through the ages, Time / Chronos became associated with the cycle of seasons, assigning to the process of change in light and life, the name Father Time in contrast to quiet, deep Mother Earth, which seems to absorb the underworld into her womb.

Conceived as such, Father Time has given way to our current understanding of RAM and neural memory codes leaving Mother Earth to stand in for blood, bones and stem cells. Today as we couple with technology and look to Big Data for knowledge and insight, we lose sight of when, and how, we capitulate to a fundamental misperception: That we are one and the same with the technology we create. Blinded by the light and speed of computer gazing, we mistake ourselves for our creations. We forget difference and our humanity — even if coupled with technology. For the sake of a popular drama, Transcendence pushes on the consequences of this misperception by entertaining a bioethics war over regenerating biological tissue. Like I said, this is a flick with a nod to X-Men.

With computational neuroscience sitting at the center of this passion play, it is neurobiologist and bioethicist Max, the Castor’s closest friend and film’s narrator who reminds us that we are Time emergent and memories alone are not us. Memory may be coded for upload but it cannot fully account for the what and who we are as neuroplastic creatures with uncertain futures. Yes, we are more than just code. As the father of American psychology William James once wrote, we draw from a world of “blooming buzzing confusion,” perceptions enriched with a variety of associated thoughts, sensations and reactions. That piece of wisdom may be more than a century old, but even if our behaviors might fit a statistical profile for behavioral economics, we are reminded: statistical profiles are not Us.

Coda:

Looking back to the late 1990’s, the call for the human-machine interface was met by both excitement and trepidation by frontier technologists and skeptical intellectuals. In my own backyard, I curated a 2003 symposium at Art Center College of Design with NASA scientists and a world famous cyborg, STELARC to discuss: What kind of science and technologies would push the design futures forward and would our imagined futures require the inevitable coupling of human and technology? Now more than 10 years later with advances in the Cloud, wearable tech and neuro-marketing, students have no greater skills for managing their union with the Borg. To paraphrase the thinking of my business partner, Gaynor Strachan Chun, ‘the problem is not with technology, but the way people behave with technology.’

Future Forward? Let’s skill up with the brain in mind to face the behavioral challenges with Big Data.

M. A. Greenstein, Ph.D., Lifeboat Advisor — Neuroscience / Diplomacy / Futures; Founder / Chairman, The George Greenstein Institute (GGI); Founder / Chief Innovation Officer, SM+ART