Toggle light / dark theme

Invisibility cloaks are a staple of science fiction and fantasy, from Star Trek to Harry Potter, but don’t exist in real life, or do they? Scientists at the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley have devised an ultra-thin invisibility “skin” cloak that can conform to the shape of an object and conceal it from detection with visible light. Although this cloak is only microscopic in size, the principles behind the technology should enable it to be scaled-up to conceal macroscopic items as well.

Working with brick-like blocks of gold nanoantennas, the Berkeley researchers fashioned a “skin cloak” barely 80 nanometers in thickness, that was wrapped around a three-dimensional object about the size of a few biological cells and arbitrarily shaped with multiple bumps and dents. The surface of the skin cloak was meta-engineered to reroute reflected waves so that the object was rendered invisible to optical detection when the cloak is activated.

“This is the first time a 3D object of arbitrary shape has been cloaked from ,” said Xiang Zhang, director of Berkeley Lab’s Materials Sciences Division and a world authority on metamaterials — artificial nanostructures engineered with electromagnetic properties not found in nature. “Our ultra-thin cloak now looks like a coat. It is easy to design and implement, and is potentially scalable for hiding macroscopic objects.”

Read more

Researchers at the University of Massachusetts Medical School are the first to show that it’s possible to reverse the behavior of an animal by flipping a switch in neuronal communication. The research, published in PLOS Biology, provides a new approach for studying the neural circuits that govern behavior and has important implications for how scientists think about neural connectomes.

New technologies have fueled the quest to map all the neural connections in the brain to understand how these networks processes information and control behavior. The human brain consists of 1011 neurons that make 1015 connections. The total length of neuronal processes in the human brain is approximately 4 million miles long, similar in length to the total number of roads in the U.S. Along these networks neurons communicate with each other through excitatory and inhibitory synapses that turn neurons on or off.

The neuronal roadmap, or connectome, however, doesn’t include information about the activity of neurons or the signals they transmit. How stable are these neural circuits in the brain? Does their wiring constrain the flow of information or the behaviors they control? The complexity of the human brain makes it almost impossible to address these questions.

Read more

Drawn to the Future, a major exhibition on visualization technology featuring leading pioneers in architecture and engineering tech, highlights how our experience of our cities and buildings will rapidly change.

Images of the city have always wielded psychological, emotional and political power. Anyone brought up on a diet of Hollywood movies and US TV shows will have had that uncanny experience as a first-time visitor to a US city — a sense of déjà vu, the feeling of being on a movie set, in a story. I took the Blade Runner cityscape so seriously as a student in New York in 1983, that after a late-night showing of the film, I went into a phone box and rang the number dialed by Harrison Ford on the ‘video screen’ (555−7563 in case you’re interested). The decay of Ridley Scott’s dystopian future spilled over into the rodent-rich, un-gentrified, occasionally threatening Lower East Side of the time.

The Drawn to the Future exhibition at The Building Centre in London, showcases the new image technologies used by architects and engineers, games makers and movie concept artists, to visualize future cities.

Read more

So, you think you’ve seen it all? You haven’t seen anything yet. By the year 2030, advancements will excel anything we’ve seen before concerning human intelligence. In fact, predictions offer glimpses of something truly amazing – the development of a human hybrid, a mind that thinks in artificial intelligence.

Ray Kurzweil, director of engineering at Google, spoke openly about this idea at the Exponential Finance Conference in New York. He predicts that humans will have hybrid brains able to connect to the cloud, just as with computers. In this cloud, there will be thousands of computers which will update human intelligence. The larger the cloud, the more complicated the thinking. This will all be connected using DNA strands called Nanobots. Sounds like a Sci-Fi movie, doesn’t it?

Kurzweil says:

Read more

We developed a robot that creates robots.


Scientists from the University of Cambridge have built a mother robot that independently builds its own children and then tests their performance to inform the design of the next generation. By analyzing the data it collects from observing the child, the mother robot ensures that preferential traits are passed down to the next iteration, while letting weaknesses fall by the wayside.

“We developed a robot that creates robots. And basically we have a mother robot that combines active and passive modules using glue to make other children robots. And these robots, as the mother creates them and puts them to work, she evaluates how they’re behaving and she uses the data from this behavior to create the next generation of robots,” explained Andre Rosendo, who worked on the project at the University’s Department of Engineering.

With no human intervention beyond a simple computer command to build a robot capable of locomotion, the mother constructs a design using between one and five plastic cubes that are stuck together using glue. Each cube has a small motor inside, so when they are attached to each other in slightly varying formations it produces a different rate of locomotion when the motors are activated. Each robot child is tested on how far it moves from a starting position in a given amount of time, with the best individuals’ traits carried over into the next generation.

Read more

The human being — especially in so-called “advanced civilizations” — is the animal that molds itself into its own pet.


Peter Sloterdijk is Germany’s most controversial thinker and media theorist. He has dared to challenge long-established divisions in traditional philosophy of body and soul, subject and object, culture and nature. His 1999 lecture on “Regulations for the Human Park,” in which he argued that genetic engineering was a continuation of human striving for self-creation, stirred up a tempest in a country known for Nazi eugenics. At the same time, he himself has concluded that “the taming of man has failed” as civilization’s potential for barbarism has grown ever greater. His seminal books include “Critique of Cynical Reason” and his trilogy, “Spheres.”

At a recent Berggruen Center on Philosophy and Culture symposium on humans and technology at Cambridge University’s St. John’s School of Divinity, The WorldPost discussed with Sloterdijk the end of borders between humans and technology, the cloud, singularity and identity in the age of globalization.

For years now, you have been arguing that a new type of being was coming into existence, as the human species fuses with its technological prosthetics — “anthropo-technology.” In this new being, man and machine are becoming one integrated, operative system linked by information.

Read more

Intel today announced plans to invest $50 million over the next ten years as part of a quantum computing push to help solve problems such as “large-scale financial analysis and more effective drug development.”

But despite the ambitions and huge cost of the project, company vice president Mike Mayberry admits that “a fully functioning quantum computer is at least a dozen years away.”

The money will be channeled through QuTech, the quantum research institute of Delft University of Technology, and TNO, with Intel additionally pledging to commit its own “engineering resources” to the collaborative effort.

Read more

Advances in 3-D printing have led to new ways to make bone and some other relatively simple body parts that can be implanted in patients. But finding an ideal bio-ink has stalled progress toward printing more complex tissues with versatile functions. Now scientists have developed a silk-based ink that could open up new possibilities toward that goal.

Read more

.


NASA Glenn Research Center, GRC, currently has several programs to advance near-term photovoltaic array development. One project is to design, build, and test two 20 kW-sized deployable solar arrays, bringing them to technology readiness level (TRL) 5, and through analysis show that they should be extensible to 300 kW-class systems (150 kw per wing). These solar arrays are approximately 1500 square meters in total area which is about an order-of-magnitude larger than the 160 square meters solar array blankets on the International Space Station (ISS).

The ISS has the four (pair) sets of solar arrays that can generate 84 to 120 kilowatts of electricity. Each of the eight solar arrays is 112 feet long by 39 feet wide and weighs 2400 pounds. There were space missions involving astronauts working in space to install and deploy the ISS solar panels.

Alliant Technical Systems, ATK, was selected in 2012 by NASA’s Space Technology Program under a Game Changing Technology competition for development of a promising lightweight and compact solar array structure. The MegaFlex™ engineering development unit, EDU, was tested at NASA GRC Plumbrook facility this year. See below for the ATK deployment of the demonstration unit.

Read more

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together just like Velcro™.

“One of the main advantages is the ease of use,” says biomedical engineer Professor Milica Radisic, who led the project. “We can build larger tissue structures immediately before they are needed, and disassemble them just as easily. I don’t know of any other technique that gives this ability.”

Growing heart muscle cells in the lab is nothing new. The problem is that too often, these cells don’t resemble those found in the body. Real heart cells grow in an environment replete with protein scaffolds and support cells that help shape them into long, lean beating machines. In contrast, lab-grown cells often lack these supports, and tend to be amorphous and weak. Radisic and her team focus on engineering artificial environments that more closely imitate what cells see in the body, resulting in tougher, more robust cells.

Read more