Toggle light / dark theme

Congrats geordie rose and jeremy hilton ; d-wave ROCKS!

News posting on T-Net)


Burnaby, BC, November 4, 2016—(T-Net)—D-Wave Systems Inc., the world’s first quantum computing company, announced the promotion of Jeremy Hilton to senior vice president, systems, with responsibility for driving the company’s quantum processor and systems research and engineering functions.

Hilton, who was previously the vice president of processor development, joined D-Wave in 2000, and has been instrumental in developing the world’s first scalable quantum processors. Hilton also led the development of D-Wave’s superconducting integrated circuit foundry. He is a named inventor on 34 granted U.S. patents.

“Jeremy has almost two decades of experience developing the most advanced scalable quantum computing systems in the world. We’re lucky to have him on the team,” said CEO Vern Brownell.

Read more

Computronium is defined by some as a substance which approaches the theoretical limit of computational power that we can achieve through engineering of the matter around us. It would mean that every atom of a piece of matter would be put to useful work doing computation. Such a system would reside at the ultimate limits of efficiency, and the smallest amount of energy possible would be wasted through the generation of heat. Computronium crops up in science fiction a lot, usually as something that advanced civilizations have created, occasionally causing conflicts due to intensive harvesting of matter from their galaxy to further their processing power. The idea is also also linked with advanced machine intelligence: A block of matter which does nothing other than compute could presumably would be incredibly sought after by any artificial intelligence looking to get the most compact and powerful brain for its money!

Read more

Engineers from Yale University have developed a new technique to control the frequency of single photons.

The ability to control the frequency of single photons is crucial to realize the potential of quantum communications and quantum computing. The current methods for changing photon frequency, however, bring with them significant drawbacks.

Researchers in the lab of Hong Tang, the Llewellyn West Jones, Jr. Professor of Electrical Engineering & Physics, have developed a technique that avoids these obstacles. The results of their work are published today in Nature Photonics. Linran Fan, a Ph.D. student in Tang’s lab, is the lead author.

Read more

Abstract: In 1959 renowned physicist Richard Feynman, in his talk “Plenty of Room at the Bottom,” spoke of a future in which tiny machines could perform huge feats. Like many forward-looking concepts, his molecule and atom-sized world remained for years in the realm of science fiction.

And then, scientists and other creative thinkers began to realize Feynman’s nanotechnological visions.

In the spirit of Feynman’s insight, and in response to the challenges he issued as a way to inspire scientific and engineering creativity, electrical and computer engineers at UC Santa Barbara have developed a design for a functional nanoscale computing device. The concept involves a dense, three-dimensional circuit operating on an unconventional type of logic that could, theoretically, be packed into a block no bigger than 50 nanometers on any side.

Read more

The team of NASA, the American Society of Mechanical Engineering (ASME), and online educational platform Future Engineers has been a lot of fun to follow over the last year. Their collaborative 3D Printing in Space Challenges have resulted in some amazing, ingenious inventions from children as young as five years old, all aimed at improving the daily lives of astronauts now and in the future, on the International Space Station and, one day, on Mars.

mars

The winners of the last challenge, the Think Outside the Box Challenge, were announced a few weeks ago, and now the three organizations have announced the fifth challenge in the series. This time, it’s geared directly towards a future Mars mission. The Mars Medical Challenge asks participants to create a digital 3D model of a medical or dental item that an astronaut could use on a three-year mission to Mars.

Read more

On October 19 in 1982, John DeLorean, the man behind one of the most sought after cars ever made, was arrested with 55 pounds of cocaine worth $24 million.

However, what could have been the end for his DMC-12 was only the beginning of a journey that literally stood the test of time and 1985 brought this car _Back to the Future_.

Ten years later, in 1995, the new DeLorean Motor Company (DMC) started to restore and repair the originals using the leftover parts. They also streamlined designs based on the original engineering drawings. But these days, DMC is finally trying to produce new, but very familiar DMC-12s.

Read more

Combination therapy to kick cancer to the curb!


Harnessing the body’s own immune system to destroy tumors is a tantalizing prospect that has yet to realize its full potential. However, a new advance from MIT may bring this strategy, known as cancer immunotherapy, closer to becoming reality.

In the new study, the researchers used a combination of four different therapies to activate both of the immune system’s two branches, producing a coordinated attack that led to the complete disappearance of large, in mice.

“We have shown that with the right combination of signals, the endogenous immune system can routinely overcome large immunosuppressive tumors, which was an unanswered question,” says Darrell Irvine, a professor of biological engineering and of materials science and engineering, and a member of MIT’s Koch Institute for Integrative Cancer Research.

Read more

I know, it doesn’t seem like there’s any possible way that a transmission system could be interesting enough that we’d dedicate an entire article (and video!) to it. But here we are: As soon as SRI explained how their new Abacus transmission worked, we were absolutely sure that it was cool enough to share. In a nutshell, here’s why: It’s the first new rotary transmission design since Harmonic Drive introduced its revolutionary gear system in the 1960s*, and it might give harmonic gears a literal run for their money.

The physics of most electric motors generally dictates that the motors are happiest when they’re spinning very fast. Unless you want to use them to simply spin a thing very fast, you’ll need to add a rotary transmission that can convert low torque, high speed rotation into higher torque, lower speed rotation. If you’ve got the budget, the way to do this is with a high-performance harmonic gear like the ones offered by Harmonic Drive. Roboticists like harmonic gears because they are compact, have high gear ratios, and, perhaps most important, don’t have backlash, which is essentially the amount of wiggle room that you get with conventional gear-based transmissions. In robotic applications, wiggling means that you don’t know exactly where everything is all the time, making precision tasks something between irritating and impossible.

Harmonic gears are great, but they’re also superduper expensive, because they require all kinds of precision machining. Alexander Kernbaum, a senior research engineer at SRI International, has come up with an entirely new rotary transmission called the Abacus drive, and it’s a beautiful piece of clever engineering that offers all kinds of substantial advantages:

Read more

A new design for solar cells that uses inexpensive, commonly available materials could rival and even outperform conventional cells made of silicon.

Writing in the Oct. 21 edition of Science, researchers from Stanford and Oxford describe using tin and other abundant elements to create novel forms of perovskite — a photovoltaic crystalline material that’s thinner, more flexible and easier to manufacture than silicon crystals.

“Perovskite semiconductors have shown great promise for making high-efficiency solar cells at low cost,” said study co-author Michael McGehee, a professor of materials science and engineering at Stanford. “We have designed a robust, all-perovskite device that converts sunlight into electricity with an efficiency of 20.3 percent, a rate comparable to silicon solar cells on the market today.”

Read more