Toggle light / dark theme

Theoretical physicists at Trinity College Dublin are among an international collaboration that has built the world’s smallest engine—which, as a single calcium ion, is approximately ten billion times smaller than a car engine.

Work performed by Professor John Goold’s QuSys group in Trinity’s School of Physics describes the science behind this tiny motor. The research, published today in international journal Physical Review Letters, explains how random fluctuations affect the operation of microscopic machines. In the future, such devices could be incorporated into other technologies in order to recycle and thus improve .

The engine itself—a single calcium ion—is electrically charged, which makes it easy to trap using electric fields. The working substance of the engine is the ion’s “intrinsic spin” (its angular momentum). This spin is used to convert heat absorbed from laser beams into oscillations, or vibrations, of the trapped ion.

A group of researchers led by Skoltech Professor Pavel Troshin studied coordination polymers, a class of compounds with scarcely explored applications in metal-ion batteries, and demonstrated their possible future use in energy storage devices with a high charging/discharging rate and stability. The results of their study were published in the journal Chemistry of Materials.

The charging/discharging rate is one of the key characteristics of lithium-ion batteries. Most modern commercial batteries need at least an hour to get fully charged, which certainly limits the scope of their application, in particular, for electric vehicles. The trouble with active materials, such as the most popular anode material, graphite, is that their capacity decays significantly, as their charging rate increases. To retain the battery capacity at high charging rates, the active electrode materials must have high electronic and ionic conductivity, which is the case with the newly-discovered coordination polymers that are derived from and salts of , such as nickel or copper. Although these compounds hold a great promise, their application in lithium-ion batteries remains virtually unexplored.

A recent study undertaken by a group of scientists from Skoltech and the Institute for Problems of Chemical Physics of RAS led by Professor P. Troshin in collaboration with the University of Cologne (Germany) and the Ural Federal University, focused on tetraaminobenzene-based linear polymers of nickel and copper. Although the linear polymers exhibited much lower initial electronic conductivity as compared to their two-dimensional counterparts, it transpired that they can be used as anode materials that get charged/discharged in less than a minute, because their conductivity increases dramatically after the first discharge due to lithium doping.

Solidia’s systems offer superior products that address the cement industry’s goal of reducing its carbon emissions, which contribute 3 to 5% of global CO2 pollution. Solidia’s patented processes start with an energy-saving, sustainable cement. Concrete made with this cement is then cured with CO2 instead of water. Together, the sustainable cement and CO2-cured concrete reduce the carbon footprint of cement and concrete by up to 70%. Additionally, up to 100% of the water used in concrete production can be recovered and recycled.


The U.S. Patent and Trademark Office issued three patents covering processes and products manufactured using Solidia Technologies‘cement and carbon-curing technology. The patents extend the range of applications for Solidia’s processes to include hollow core, pervious and aerated concrete.

This press release features multimedia. View the full release here: https://www.businesswire.com/news/home/20190516006022/en/

CO2-cured Solidia Concrete™ hollow core (Photo: Business Wire)

The McKay-Zubrin plan for terraforming Mars in 50 years was cited by Elon Musk.

Orbital mirrors with 100 km radius are required to vaporize the CO2 in the south polar cap. If manufactured of solar sail-like material, such mirrors would have a mass on the order of 200,000 tonnes. If manufactured in space out of asteroidal or Martian moon material, about 120 MWe-years of energy would be needed to produce the required aluminum.

The use of orbiting mirrors is another way for hydrosphere activation. For example, if the 125 km radius reflector discussed earlier for use in vaporizing the pole were to concentrate its power on a smaller region, 27 TW would be available to melt lakes or volatilize nitrate beds. This is triple the power available from the impact of a 10 billion tonne asteroid per year, and in all probability would be far more controllable. A single such mirror could drive vast amounts of water out of the permafrost and into the nascent Martian ecosystem very quickly. Thus while the engineering of such mirrors may be somewhat grandiose, the benefits to terraforming of being able to wield tens of TW of power in a controllable way would be huge.

In the U.S., air travel accounts for about a third of all Co2 emissions. A startup called ZeroAvia wants to clean things up in a big way.

ZeroAvia recently emerged from stealth with a zero-emission powertrain for small aircraft. It’s electric, but there are no big, bulky batteries involved. ZeroAvia opted for compressed hydrogen instead.

Why not use batteries? Compressed hydrogen is about four times as energy-dense as today’s best batteries. Founder, physicist and pilot Valery Miftakhov told FastCompany “actually getting a sizable aircraft in the air for a reasonable amount of time will be quite difficult with batteries.” That’s something he believes isn’t likely to change in the near future.

Imagine making the 2,710-mile trip from Philadelphia to Los Angeles using just one gallon of gas.

You might look silly doing it, but students from Université Laval, in Quebec, have theoretically made that outlandish trip possible with their prototype gasoline-powered car that gets 2,713.1 miles per gallon.

The Laval team took home the big prize at this year’s Shell Eco-marathon Americas, a competition in which university students design a prototype car using various fuels, from gasoline to hydrogen fuel cells, in an attempt to maximize efficiency on a Detroit, Michigan test track.

We’re only a handful of months away from the year 2020, and with the way parts look and tech acts, it finally feels like we’re entering the future. It’s a future crafted by sophisticated 3D printers and machining centers, using materials provided by global-reaching supply chains and connected to an exponential rate of new superpowered gadgets. Nowadays, there’s really no reason to think any manufacturing feat is impossible. If something doesn’t exist, it’s just that we haven’t figured it out yet.

And this futuristic techtopia brimming with potential wouldn’t be possible if not for engineers—those dedicated, uber-creative folks plotting such a course, continuously improving the world around through the super power of… math.

Mathematics has been the indispensable fuel to make the impossible possible since at least the ancient Egyptians more than four thousand years ago. The Great Pyramid of Giza is the world’s oldest monument to its power. Amazingly, its geometrical elegance was calculated on papyrus scrolls, most of which have turned to dust long ago. Yet the universal language of math still speaks through its dimensions. And it will continue to do so for time immemorial.

The invention is an improved piston engine, either two stroke or four stroke. In one, two stroke, one cylinder embodiment, the improvement comprises two springs connecting between the piston and the base of the piston. These springs are relatively relaxed when the crank is at top dead center. Then during the power/intake stroke, some of the fuel’s energy is delivered to the crankshaft and some is used to compress the springs. The stored energy in the springs is delivered to the crankshaft during the exhaust/compression stroke while the springs return to their relatively relaxed condition. As a result, energy is delivered to the crankshaft during both strokes of the cycle, and the engine runs smooth.

In one, four stroke, two cylinder embodiment, each cylinder has springs as described above, the cranks of each cylinder are aligned, and the cam sets one cylinder in the power stroke while the other is in the intake stroke. As a result, the engine runs smooth because energy is delivered to the crankshaft during all four strokes of the cycle, during two of the strokes by the burning fuel and during the other two by the release of energy in the springs. In both embodiments, a heavy crankshaft is not needed because of the more uniform power delivery.

A Texas-based startup has raised US$4.5 million in seed funding to develop and commercialize a remarkable electric motor technology. The father/son team claims the design can massively reduce the size and complexity of electric powertrains while also significantly boosting efficiency and doubling the torque output.