Toggle light / dark theme

A French startup is trying to streamline electric conversion with Tesla batteries in order to offer a relatively cheap way to convert older fossil fuel-powered cars.

Therefs nothing new about electric conversions, but they are often really complicated, which also makes them really expensive.

It most often cost tens of thousands of dollars, and thatfs why most electric conversions today are done on classic cars or to create drag-strip monsters.

Researchers at the University of Waterloo have developed a cheaper and more efficient method for Internet-of-Things devices to receive high-speed wireless connectivity.

With 75 billion Internet of Things (IoT) devices expected to be in place by 2025, a growing strain will be placed on requirements of wireless networks. Contemporary WiFi and won’t be enough to support the influx of IoT devices, the researchers highlighted in their new study.

Millimeter wave (mmWave), a that offers multi-gigahertz of unlicensed bandwidth—more than 200 times that allocated to today’s WiFi and cellular networks, can be used to address the looming issue. In fact, 5G networks are going to be powered by mmWave technology. However, the hardware required to use mmWave is expensive and power-hungry, which are significant deterrents to it being deployed in many IoT applications.

Could be used for fires aswell.


The vortex ring gun is an experimental non-lethal weapon for crowd control that uses high-energy vortex rings of gas to knock down people or spray them with marking ink or other chemicals.

The concept was explored by the US Army starting in 1998, and by some commercial firms. Knockdown of distant individuals currently seems unlikely even if the rings are launched at theoretical maximum speed.[1] As for the delivery of chemicals, leakage during flight is still a problem.[ citation needed ]

Weapons based on similar principles but different designs and purposes have been described before, typically using acetylene-air or hydrogen–oxygen explosions to create and propel the vortices.[2].

Editor’s note: This article is part of a supporting engagement with the Electromagnetic Defense Task Force’s efforts in order to inform readers on the vulnerabilities within the electromagnetic spectrum. For the printer friendly version click here.

Abstract

In spring 2019, a group of nearly 200 military, government, academic, and private industry experts in various areas of electromagnetic defense gathered for the second Electromagnetic Defense Task Force (EDTF) summit. During this time a full analytical and technical review was initiated on the recently released report titled “High-Altitude Electromagnetic Pulse and the Bulk Power System: Potential Impacts and Mitigation Strategies” authored by the Electric Power Research Institute (EPRI). This essay outlines the strengths and weaknesses of the report and aims to generate further discussion among industry, policy makers, military, and academia to ensure the nation is adequately prepared for any potential electromagnetic event.

Theoretical physicists from SISSA and the University of California at Davis have developed a new approach to heat transport in materials, which finally allows crystals, polycrystalline solids, alloys and glasses to be treated on the same solid footing. It opens the way to the numerical simulation of the thermal properties of a vast class of materials in important fields such as energy saving, conversion, scavenging, storage, heat dissipation, shielding and the planetary sciences, which have thus far dodged a proper computational treatment. The research has been published in Nature Communications.

Heat dissipates over time. In a sense, is the defining feature of the arrow of time. In spite of the foundational importance of heat transport, the father of its modern theory, Sir Rudolph Peierls, wrote in 1961, “It seems there is no problem in modern physics for which there are on record as many false starts, and as many theories which overlook some essential feature, as in the problem of the thermal conductivity of nonconducting crystals.”

A half-century has passed since, and heat transport is still one of the most elusive chapters of theoretical materials science. As a matter of fact, no unified approach has been able to treat crystals and (partially) disordered solids on equal footing, thus hindering the efforts of generations of materials scientists to simulate certain materials, or different states of the same material occurring in the same physical system or device with the same accuracy.

With a flourish of a silk curtain at the Farnborough Air Show on July 16, British defense secretary Gavin Williamson unveiled a full-scale model of the Tempest, the UK’s concept for a domestically built twin-engine stealth fighter to enter service in the 2030s. The Tempest will supposedly boast a laundry list of sixth-generation technologies such as being optionally-manned, mounting hypersonic or directed energy weapons, and capability to deploy and control drone swarms. However, it may also represent a Brexit-era gambit to revive defense cooperation with Germany and France.

London has seeded “Team Tempest” with £2 billion ($2.6 billion) for initial development through 2020. Major defense contractor BAE System is leading development with the Royal Air Force, with Rolls Royce contributing engines, European firm MBDA integrating weapons, and Italian company Leonardo developing sensors and avionics.

Design will supposedly be finalized in the early 2020s, with a flyable prototype planned in 2025 and production aircraft entering service in 2035, gradually replacing the RAF’s fourth-generation Typhoon fighters and complementing F-35 stealth jets. This seventeen-year development cycle is considered ambitious for something as complicated and expensive as a stealth fighter.

A University of Texas at Dallas physicist has teamed with Texas Instruments Inc. to design a better way for electronics to convert waste heat into reusable energy.

The collaborative project demonstrated that silicon’s ability to harvest energy from heat can be greatly increased while remaining mass-producible.

Dr. Mark Lee, professor and head of the Department of Physics in the School of Natural Sciences and Mathematics, is the corresponding author of a study published July 15 in Nature Electronics that describes the results. The findings could greatly influence how circuits are cooled in electronics, as well as provide a method of powering the sensors used in the growing “internet of things.”

TeraWatt Technology announced that its 4.5Ah prototype solid-state battery design achieved a record-breaking energy density of 432Wh/kg (1122Wh/L) in validation tests conducted by third parties, including TOYO System based in Japan.

Branded as TERA3.0, this 4.5Ah next-generation design will be available for select early adopters in 2021 and full release in 2022. TeraWatt Technology continues to further iterate the TERA3.0 line of design, as well as further develop additional designs including different cell formats, sizes and energy capacities.

3ADEE6D3-6DBE-4EE1-9232-8A314CD91E1E

Physics World represents a key part of IOP Publishing’s mission to communicate world-class research and innovation to the widest possible audience. The website forms part of the Physics World portfolio, a collection of online, digital and print information services for the global scientific community.