Toggle light / dark theme

A new study finds that hydrogen fuel produced from water using renewable energy will be cheaper than natural gas-based hydrogen with carbon capture by 2030.


New research predicts that green hydrogen — a clean fuel produced from water using renewables — will be comparable in cost and likely cheaper than blue hydrogen by 2030. This is much sooner than what the blue hydrogen industry is estimating when advocating for the natural gas-based fuel to be widely adopted — essentially eliminating the only viable argument to invest in blue hydrogen.

The True Cost of Solar Hydrogen,” the report from a European research team led by the European Technology and Innovation Platform for Photovoltaics, was published September 7 in the journal Solar RRL and concludes that “during this decade, solar hydrogen will be globally a less expensive fuel compared with hydrogen produced from natural gas with CCS [blue hydrogen].” (CCS is carbon capture and storage.)

This is a much different scenario than the argument being made by supporters of blue hydrogen, such as the gas industry and others who are claiming that within a decade green hydrogen will still be at least double the cost of blue hydrogen.

Michigan will become the first state in America to deploy inductive vehicle charging technology in roads, in an effort to accelerate the adoption of electric vehicles (EVs).

Governor of Michigan, Gretchen Whitmer, made the announcement during the opening ceremony of the Motor Bella auto show on Tuesday. The Inductive Vehicle Charging Pilot is a partnership between Michigan’s Department of Transportation (MDOT) and the Office of Future Mobility and Electrification (OFME). It will deploy an electrified roadway system allowing electric cars, buses, shuttles and other vehicles to charge while driving, allowing them to operate continuously without stopping to charge. This will address range anxiety, while turning public roads into safe, sustainable, shared energy platforms.

“Michigan was home to the first mile of paved road, and now we’re paving the way for the roads of tomorrow with innovative infrastructure that will support the economy and the environment, helping us achieve our goal of carbon neutrality by 2050,” said Governor Whitmer. “This project reinforces my commitment to accelerating the deployment of electric vehicle infrastructure in Michigan and will create new opportunities for businesses and high-tech jobs amidst the transition to electric vehicles.”

The study had been supported by LG Energy Solution’s open innovation, a program that actively supports battery-related research. LGES has been working with researchers around the world to foster related techniques.


Silicon anodes are famous for their energy density, which is 10 times greater than the graphite anodes most often used in today’s commercial lithium ion batteries. On the other hand, silicon anodes are infamous for how they expand and contract as the battery charges and discharges, and for how they degrade with liquid electrolytes. These challenges have kept all-silicon anodes out of commercial lithium ion batteries despite the tantalizing energy density. The new work published in Science provides a promising path forward for all-silicon-anodes, thanks to the right electrolyte.

“With this battery configuration, we are opening a new territory for solid-state batteries using alloy anodes such as silicon,” said Darren H. S. Tan, the lead author on the paper. He recently completed his chemical engineering PhD at the UC San Diego Jacobs School of Engineering and co-founded a startup UNIGRID Battery that has licensed this technology.

LG Energy Solutions, a partner in the research, has plans for mass production of solid-state batteries by 2027.


While the transition to renewable energies is a high priority, there is also a need to develop energy storage equipment to tide over low production cycles. Lithium-ion batteries are currently our best bet but can’t serve very high energy requirements. Researchers at the University of California, San Diego, in collaboration with LG Energy Solutions, may have solved our requirement of energy-dense batteries by developing a solid-state battery with a silicon anode.

Lithium-ion batteries use graphite coated in copper foil, as their anodes or negative electrode. While this system does work well, future applications such as electric-powered flight and energy storage for grids require batteries with high energy densities. Scientists around the globe are working to resolve this issue and ubiquitous silicon is a potential answer.

Theoretically, silicon as an anode in a lithium-ion battery can deliver 10 times the energy capacity that graphite currently offers. Scientists have known this for decades and have tried to use silicon in batteries only to see them fare poorly. Silicon reacts with the liquid electrolytes in the batteries and even expands and contracts during charging and discharging cycles. This results in capacity losses over a period of time, taking away the edge that silicon offered in the first place.

A surprise result for solid state physicists hints at an unusual electron behavior.

While studying the behavior of electrons in iron-based superconducting materials, researchers at the University of Tokyo observed a strange signal relating to the way electrons are arranged. The signal implies a new arrangement of electrons the researchers call a nematicity wave, and they hope to collaborate with theoretical physicists to better understand it. The nematicity wave could help researchers understand the way electrons interact with each other in superconductors.

A long-standing dream of solid state physicists is to fully understand the phenomenon of superconductivity — essentially electronic conduction without the resistance that creates heat and drains power. It would usher in a whole new world of incredibly efficient or powerful devices and is already being used on Japan’s experimental magnetic levitation bullet train. But there is much to explore in this complex topic, and it often surprises researchers with unexpected results and observations.

Working with electric utilities is one of the more time consuming parts of building new charging stations, as quite a lot of infrastructure work and planning goes into building an EV station, as the local grid has to be taken into account in such projects.

But what if electric utilities weren’t involved at all, and a station could just be delivered on a flatbed truck with a forklift?

That’s the promise of a fast-charging station dubbed Drive Booster, developed by E.ON and Volkswagen that was just opened for use in Essen, Germany. The concept behind it is quite simple: Instead of drawing power directly from the grid, the charger has its own integrated battery, and draws power from a normal power connection found in any supermarket, like a soda machine or other large appliance. The charger can juice up two EVs at once at speeds of up to 150 kW, giving them enough range in 15 minutes to travel 124 miles.

See how dormant potential energy explodes in psychedelic swirls when chemicals meet by combining oils, alcohols and inks in Petri dishes. Via the dazzling, colourful patterns that emerge, Gatti draws a line back to the surface of the Sun, where the constant churn of a volatile chemical reaction makes life on Earth possible.

A decent chunk of energy usage goes towards lighting, so scientists at MIT are developing a new kind of passive lighting – glow-in-the-dark plants. In the latest experiment, the team has made them glow much brighter than the first generation plants, without harming their health.

The emerging field of “plant nanobionics” involves embedding nanoparticles into plants to give them new abilities. Past work by the MIT team has created plants that can send electrical signals when they need water, spinach that could be used to detect explosives, and watercress that glows in the dark.

As interesting as that last one was, the glow wasn’t particularly bright – about on par with those plastic glowing stars many of us stuck to our ceilings as kids. That’s a cool novelty but not much help for the ultimate use case of passive lighting.

There are many parts of the world which lack infrastructure, but that get a lot of sunlight … which makes buildings uncomfortably hot. A new system could help, as it uses a combination of sunlight and salt water – but no electricity – to produce a cooling effect.

Currently being developed at Saudi Arabia’s King Abdullah University of Science and Technology (KAUST), the experimental setup takes advantage of a natural “phase-change” phenomenon in which energy is absorbed as salt crystals dissolve within water. This means that if salt is added to warm water, that water rapidly cools as the salt dissolves.

After some experimentation with different types of salt, it was found that one known as ammonium nitrate worked best. Mainly because it’s highly water-soluble, its cooling power is four times greater than that of the next-best salt, ammonium chloride. As an added bonus, ammonium nitrate is already widely utilized in fertilizer, and is quite inexpensive.