Toggle light / dark theme

Here come the self drying jackets and self tying shoes! wink


The Athos Upper Body Package includes 14 built in sensors for real-time muscle and heart rate data. (credit: Athos)

Wearables will “disappear” in 2016, predicts New Enterprise Associates venture capital partner Rick Yang, cited in a Wednesday (Dec. 16) CNBC article — integrated “very directly into your everyday life, into your existing fashion sense to the extent that nobody knows you’re wearing a wearable,” he said.

For example, Athos makes smart workout clothes embedded with inconspicuous technology that tracks muscle groups, heart, and breathing rates, he noted.

Read more

Are we evolving into new species with hybrid thinking interlinked into the Global Mind? At what point will the Web may become self-aware? Or is it already? Once our neocortices are seamlessly connected to the Web, how will that feel like to step up one level above human consciousness to global consciousness?

In his book “The Global Brain” Howard Bloom argues that humans are a lot like neurons of the “global connectome”, and the coming Internet of Things (IoT) with trillions of sensors around the planet will become effectively the nervous system of Earth.

According to Gaia hypothesis by James Lovelock, we have always been an integral part of this “Meta-Mind”, collective consciousness, global adaptive and self-regulating system while tapping into vast resources of information pooling and at the same time having a “shared hallucination”, we call reality.

Read more

A researcher at Singapore’s Nanyang Technological University (NTU) has developed a new technology that provides real-time detection, analysis, and optimization data that could potentially save a company 10 percent on its energy bill and lessen its carbon footprint. The technology is an algorithm that primarily relies on data from ubiquitous devices to better analyze energy use. The software uses data from computers, servers, air conditioners, and industrial machinery to monitor temperature, data traffic and the computer processing workload. Data from these already-present appliances are then combined with the information from externally placed sensors that primarily monitor ambient temperature to analyze energy consumption and then provide a more efficient way to save energy and cost.

The energy-saving computer algorithm was developed by NTU’s Wen Yonggang, an assistant professor at the School of Computer Engineering’s Division of Networks & Distributed Systems. Wen specializes in machine-to-machine communication and computer networking, including looking at social media networks, cloud-computing platforms, and big data systems.

Most data centers consume huge amount of electrical power, leading to high levels of energy waste, according to Wen’s website. Part of his research involves finding ways to reduce energy waste and stabilize power systems by scaling energy levels temporally and spatially.

Read more

At MIT, researchers have developed a stretchable bandage-like device capable of sensing skin temperature, delivering drugs transdermally, and containing electronics that include LED lights for displaying information. The various components of the system are designed to work together, for example the drug dispenser activating only when skin temperature is within a certain range and the LEDs lighting up when the drug reservoirs are running low. While this is only a prototype device, it certainly points toward future flexible devices that stay attached to a person’s skin, or even internally, for extended periods of time while providing health data and taking therapeutic actions in an intelligent way.

The device is based on a stretchable hydrogel matrix that reliably holds onto embedded metallic components linked by pliable wires. The hydrogel was made to have a stiffness similar to human soft tissues so that it blends well with the body when attached to it. When wires, drug reservoirs, delivery channels, and electronic components were built-in, the team tested the stretchiness of the final result showing that it maintains functionality even after repeated stress.

Read more

https://youtube.com/watch?v=Pi7iCUSXctY

How can a person see around a blind corner? One answer is to develop X-ray vision. A more mundane approach is to use a mirror. But if neither are an option, a group of scientists led by Genevieve Gariepy have developed a state-of-the-art detector which, with some clever data processing techniques, can turn walls and floors into a “virtual mirror”, giving the power to locate and track moving objects out of direct line of sight.

The shiny surface of a mirror works by reflecting from an at a well-defined angle towards your eye. Because light scattered from different points on the object is reflected at the same angle, your eye sees a clear image of the object. In contrast, a non-reflective surface scatters light randomly in all directions, and creates no clear image.

However, as the researchers at Heriot-Watt University and the University of Edinburgh recognised, there is a way to tease out information on the object even from apparently random scattered light. Their method, published in Nature Photonics, relies on laser range-finding technology, which measures the distance to an object based on the time it takes a pulse of light to travel to the object, scatter, and travel back to a detector.

Read more

Just How Much Did ‘Back to the Future’ Get Right about October 2015? 2:19.

In “Back to the Future Part II,” Marty McFly and Doc Brown travel from 1985 to October 21, 2015, to find a world filled with flying cars, hoverboards and self-drying jackets.

Those predictions didn’t exactly pan out, although people are working on each of those concepts. (Screenwriter Bob Gale did get a lot of things — from drones to fingerprint scanners — right, as he told TODAY earlier this year.)

Read more

Researchers at Linköping University’s Laboratory of Organic Electronics, Sweden, have developed power paper — a new material with an outstanding ability to store energy. The material consists of nanocellulose and a conductive polymer. The results have been published in Advanced Science.

One sheet, 15 centimetres in diameter and a few tenths of a millimetre thick can store as much as 1 F, which is similar to the supercapacitors currently on the market. The material can be recharged hundreds of times and each charge only takes a few seconds.

It’s a dream product in a world where the increased use of renewable energy requires new methods for energy storage — from summer to winter, from a windy day to a calm one, from a sunny day to one with heavy cloud cover.

Read more

LG really, really wants your next TV, smartwatch, and car to use an OLED panel and, preferably, one that’s come off its new $8.71bn production line. The company’s panel arm, LG Display, has announced a whopping 1.84 trillion South Korean Won investment into a brand new facility dubbed P10, which will cater for what LG predicts will be blockbuster demand for OLED in a range of sizes.

That $8.71bn is only the tip of the iceberg, mind, and the plant — to be constructed in Paju, Gyeonggi Province, Korea — is expected to eventually cost more than five times that amount.

Construction will begin this year, with the initial investment expected to cover the P10 building itself, the foundations for its clean rooms, and the various components of infrastructure for water and power supplies.

Read more