Toggle light / dark theme

Mother-meets-recreation-of-deceased-child-in-vr.


South Korean TV broadcaster MBC recently aired a Korean language documentary that centers on a family’s loss of their young daughter, seven-year-old Nayeon. Using the power of photogrammetry, motion capture, and virtual reality, the team recreated Nayeon for one last goodbye with the family’s mother, Ji-sung.

One day, we gonna engineer all of these to build better humankind for those capable of surviving in the vas space.


From our free online course, “Cell Biology: Mitochondria”: https://www.edx.org/course/cell-biology-mitochondria-harvardx-mcb64-1x-1?utm_source=social&utm_medium=partner-marketing&utm_content=youtube-harvardx&utm_campaign=harvardx

Harvard Professor Rob Lue explains how mitochondrial diseases are inherited and discusses the threshold effect and its implications for mitochondrial disease inheritance.

— Subscribe to our channel:

— Sign up for emails about new courses: https://harvardx.link/email

— HarvardX courses on edX: https://www.edx.org/school/harvardx

— Harvard University’s online courses: https://online-learning.harvard.edu/

HarvardX empowers the faculty of Harvard University to create high-quality online courses in subjects ranging from computer science to history, education, and religion.

Elon Musk is recruiting for his AI team at Tesla, and he says education is “irrelevant.” The team members will report “directly” to Musk and “meet/email/text” with Musk “almost every day.” Musk will also throw a “super fun” party at his house with the Tesla artificial intelligence and autopilot teams.

Experiences early in life have an impact on the brain’s biological and functional development, shows a new study by a team of neuroscientists. Its findings, which centered on changes in mice and rats, reveal how learning and memory abilities may vary, depending on the nature of individual experiences in early life.

“The implications of this are many, including environmental influences on mental health, the role of education, the significance of poverty, and the impact of social settings,” says Cristina Alberini, a professor in New York University’s Center for Neural Science and the senior author of the paper, which appears in the journal Nature Communications.

“These results also offer promise for potential therapeutic interventions,” add Alberini and Benjamin Bessières, an NYU postdoctoral researcher and the paper’s co-lead author. “By identifying critical time periods for brain development, they provide an indicator of when pharmaceutical, behavioral or other type of interventions may be most beneficial.”

Fragrance helps learning even during sleep!


Effortless learning during sleep is the dream of many people. The supportive effect of smells on learning success when presented both during learning and sleep was first proven in an extensive sleep laboratory study. Researchers at the University of Freiburg—Medical Center, the Freiburg Institute for Frontier Areas of Psychology and Mental Health (IGPP) and the Faculty of Biology at the University of Freiburg have now shown that this effect can be also achieved very easily outside the lab. For the study, pupils in two school classes learned English vocabulary—with and without scent sticks during the learning period and also at night. The students remembered the vocabulary much better with a scent. The study was published in the Nature Group’s Open Access journal Scientific Reports on 27 January 2020.

“We showed that the supportive effect of fragrances works very reliably in and can be used in a targeted way,” said study leader PD Dr. Jürgen Kornmeier, head of the Perception and Cognition Research Group at the Freiburg-based IGPP and scientist at the Department of Psychiatry and Psychotherapy at the University of Freiburg—Medical Center in Germany.

The smell of roses when learning and sleeping

For the study, first author and student teacher Franziska Neumann conducted several experiments with 54 students from two 6th grade classes of a school in southern Germany. The young participants from the group were asked to place rose-scented incense sticks on their desks at home while learning English and on the bedside table next to the bed at night. In another experiment, they also placed the incense sticks on the table next to them during a vocabulary test at school during an English test. The results were compared with test results in which no incense sticks were used during one or more phases.

The world’s first programming language based on classical Chinese is only about a month old, and volunteers have already written dozens of programs with it, such as one based on an ancient Chinese fortune-telling algorithm.

The new language’s developer, Lingdong Huang, previously designed an infinite computer-generated Chinese landscape painting. He also helped create the first and so far only AI-generated Chinese opera. He graduated with a degree in computer science and art from Carnegie Mellon University in December.

After coming up with the idea for the new language, wenyan-lang, roughly a year ago, Huang finished the core of the language during his last month at school. It includes a renderer that can display a program in a manner that resembles pages from ancient Chinese texts.

Edward Alexander Bouchet Yale College class of 1874Edward Alexander Bouchet (September 15, 1852 – October 28, 1918) was an African American physicist and educator and was the first African-American to earn a Ph.D. from any American university, completing his dissertation in physics at Yale in 1876. While completing his studies, Bouchet was also the first African American to be inducted in to Phi Beta Kappa for his stellar academic performance in his undergraduate studies. Bouchet’s original research focused on geometrical optics, and he wrote a dissertation entitled “On Measuring Refractive Indices.”

Unfortunately, after completing his dissertation, Bouchet was unable to find a university teaching position after college, probably because of racial discrimination. Bouchet moved to Philadelphia in 1876 and took a position at the Philadelphia’s Institute for Colored Youth (now Cheyney University of Pennsylvania), where he taught physics and chemistry for the next 26 years. Bouchet spent the next several years in several different teaching positions around the country. In 1916, Bouchet returned home to New Haven in poor health, and died in 1918 at age 66.

Dr. Bouchet’s impact on physics still resonates today around the world. The American Physical Society (APS Physics) confers the Edward A. Bouchet Award on some of the nation’s outstanding physicists for their contribution to physics. The Edward Bouchet Abdus Salam Institute was founded in 1988 by the late Nobel Laureate, Professor Abdus Salam under the direction of the founding Chairman Charles S. Brown. In 2005, Yale and Howard University founded the Edward A. Bouchet Graduate Honor Society in his name.

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The National Science Foundation has done just as part of its EPiQC (Enabling Practical-scale Quantum Computing) program. So far eight €˜Zines €™ have been created with more to come.

€œComic books offer approachable ways to convey both humor and information. One might think that comic books would not be able to convey complex information like the ideas behind QC. In this case, one would be wrong, at least for one as creative as the University of Chicago €™s Diana Franklin, as part of the National Science Foundation (NSF) funded EPIQC Expedition in Computing, € wrote Mark Hill of the University of Wisconsin-Madison in a recent blog for Computing Community Consortium, run by NSF.

€œIn particular, Diana and colleagues have developed eight, with more coming, €œ zines € that are comic-book-like pamphlets obtained by printing and folding a single sheet of paper. The topics include quantum notation, superposition, and history. In my humble opinion, these are great examples of the synergy possible with research and education done together. Enjoy! €.

I’m excited to share my new opinion piece on AI facial recognition and privacy for IEEE Spectrum:


The views expressed here are solely those of the author and do not represent positions of IEEE Spectrum or the IEEE.

Many people seem to regard facial-recognition software in much the same way they would a nest of spiders: They recognize, in some abstract way, that it probably has some benefits. But it still gives them the creeps.

It’s time for us to get over this squeamishness and embrace face recognition as the life-enhancing—indeed, life–saving—technology that it is. In many cities, closed-circuit cameras increasingly monitor streets, plazas, and parks around the clock. Meanwhile, the price of recognition software is decreasing, while its capabilities are increasing.

I welcome these trends. I want my 9-year-old daughter tracked while she walks alone to school. I want a face scanner at Starbucks to simply withdraw the payment for my coffee from my checking account. I want to board a plane without fumbling for a boarding pass. Most of all, I want murderers or terrorists recognized as they walk on a city street and before they can cause further mayhem.

IBM and the University of Tokyo will form the Japan – IBM Quantum Partnership, a broad national partnership framework in which other universities, industry, and government can engage. The partnership will have three tracks of engagement: one focused on the development of quantum applications with industry; another on quantum computing system technology development; and the third focused on advancing the state of quantum science and education.

Under the agreement, an IBM Q System One, owned and operated by IBM, will be installed in an IBM facility in Japan. It will be the first installation of its kind in the region and only the third in the world following the United States and Germany. The Q System One will be used to advance research in quantum algorithms, applications and software, with the goal of developing the first practical applications of quantum computing.

IBM and the University of Tokyo will also create a first-of-a-kind quantum system technology center for the development of hardware components and technologies that will be used in next generation quantum computers. The center will include a laboratory facility to develop and test novel hardware components for quantum computing, including advanced cryogenic and microwave test capabilities.