Toggle light / dark theme

A recent study from the University of Melbourne proposes a new theory for the origin of dark matter, helping experimentalists in Australia and abroad in the search for the mysterious new matter.

The work has been published in Physical Review Letters and describes how expanding bubbles in the early universe may be the key to understanding dark matter.

“Our proposed mechanism suggests that the dark matter abundance may have been determined in a cosmological phase transition,” said Dr. Michael Baker, a postdoctoral research fellow at the University of Melbourne and one of the authors.

Look into the night sky and you’ll glimpse the stars from hundreds of billions of galaxies. Some galaxies are swirling blue disks like our own Milky Way, others are red spheres or misshapen, clumpy messes or something in between. Why the different configurations? It turns out that a galaxy’s shape tells us something about the events in that galaxy’s ultra-long life.

At the very basic level there are two classifications for galaxy shapes: disk and elliptical. A disk galaxy, also called a spiral galaxy, is shaped like a fried egg, said Cameron Hummels, theoretical astrophysicist at Caltech. These galaxies have a more spherical center, like the yolk, surrounded by a disk of gas and stars — the egg white. The Milky Way and our nearest galaxy neighbor Andromeda fall into this category.

Circa 2010


Until the LHC finally gets up to full speed, Brookhaven National Lab’s Relativistic Heavy Ion Collider (RHIC) remains the world’s most powerful heavy ion smasher. And on Monday, they showed off some of that power by announcing that a recent collision resulted in the hottest matter ever recorded. Coming in at a scorching 7.2 trillion degrees Fahrenheit, the plasma not only recreated the environment of the Big Bang, but might have also resulted in the temporary formation of a bubble within which some normal laws of physics did not apply.

Black holes are perhaps the most mysterious objects in nature. They warp space and time in extreme ways and contain a mathematical impossibility, a singularity – an infinitely hot and dense object within. But if black holes exist and are truly black, how exactly would we ever be able to make an observation?

This morning the Nobel Committee announced that the 2020 Nobel Prize in physics will be awarded to three scientists – Sir Roger Penrose, Reinhard Genzel and Andrea Ghez – who helped discover the answers to such profound questions. Andrea Ghez is only the fourth woman to win the Nobel Prize in physics.

Robert Penrose is a theoretical physicist who works on black holes, and his work has influenced not just me but my entire generation through his series of popular books that are loaded with his exquisite hand-drawn illustrations of deep physical concepts.

It’s unbelievable all that’s going on at the moment in astronomy” — DER SPIEGEL — international.


DER SPIEGEL: Wherever black holes are discussed, that picture is shown. And you are now telling us that we don’t really even know what it is?

Genzel: Exactly. It could be that we are looking at the shadow of a black hole, as it is commonly portrayed. But it could also be the outer wall of a jet that is coming directly at us at the speed of light. To know for sure, we need additional measurements. But we have a problem at the moment: the corona pandemic. Most Earth-based telescopes have been switched off.

DER SPIEGEL: Tell us a little bit about your research. What is the importance of a black hole at the center of the Milky Way?

ABSTRACT. This paper presents strong observational evidence of numerous previously unobserved anomalous circular spots, of significantly raised temperature, in the cosmic microwave background sky. The spots have angular radii between 0.03 and 0.04 rad (i.e. angular diameters between about 3° and 4°). There is a clear cut-off at that size, indicating that each anomalous spot would have originated from a highly energetic point-like source, located at the end of inflation – or else point-like at the conformally expanded Big Bang, if it is considered that there was no inflationary phase. The significant presence of these anomalous spots, was initially noticed in the Planck 70 GHz satellite data by comparison with 1000 standard simulations, and then confirmed by extending the comparison to 10 000 simulations. Such anomalous points were then found at precisely the same locations in the WMAP (Wilkinson Microwave Anisotropy Probe) data, their significance was confirmed by comparison with 1000 WMAP simulations. Planck and WMAP have very different noise properties and it seems exceedingly unlikely that the observed presence of anomalous points in the same directions on both maps may come entirely from the noise. Subsequently, further confirmation was found in the Planck data by comparison with 1000 FFP8.1 MC simulations (with l ≤ 1500). The existence of such anomalous regions, resulting from point-like sources at the conformally stretched-out big bang, is a predicted consequence of conformal cyclic cosmology, these sources being the Hawking points of the theory, resulting from the Hawking radiation from supermassive black holes in a cosmic aeon prior to our own.

Congratulations from Ogba Educational Clinic.


The 2020 Nobel Prize for Physics has been awarded to Roger Penrose, Reinhard Genzel and Andrea Ghez for their work on black holes.

The prize is worth 10 million Swedish krona (about $1.1 million) and half goes to Penrose, with Genzel and Ghez sharing the other half of the prize.

The Nobel Committee cites Penrose “for the discovery that black hole formation is a robust prediction of the general theory of relativity”, and Genzel and Ghez “for the discovery of a supermassive compact object at the centre of our galaxy”.