ISAAC NEWTON is rightly regarded as the greatest scientist of all time. However, groundbreaking black hole research has now disproved Newton’s theory of gravity – and even Albert Einstein’s theories are “starting to fray around the edges”, a scientist has warned.
Category: cosmology
I don’t use the term artificial gravity because, the gravity from a black hole is real.
If you have harnessed and are able to control a black hole would you be able to use it as portable gravity device?
I don’t really have the physics and the math to to figure it out. But it would seem that if you are in a low gravity environment, you could place a black hole under the floor, and have gravity. Presumably by changing the distance between the floor and the black hole you could adjust to 1 gravity or partial gravity.
Astrophysicists think they know how to destroy a black hole. The puzzle is what such destruction would leave behind.
Vera Rubin is shown here in 1974, analyzing data from different portions of a galaxy to ascertain its rotational properties. The discovery that the effects of gravity did not trace out the same path that the starlight does was one of the most important discoveries of the 20th century, and brought dark matter into the mainstream of science from the fringes, where it had languished for most of the 20th century. Her work changed our conception of the Universe forever.
You can amplify light by bouncing it between the horizons of a black hole and a white hole. Now physicists have worked out how to build such a device in the lab.
Making a replicator from this could make something that could create almost anything :3.
The first type of molecule that ever formed in the universe has been detected in space for the first time, after decades of searching. Scientists discovered its signature in our own galaxy using the world’s largest airborne observatory, NASA’s Stratospheric Observatory for Infrared Astronomy, or SOFIA, as the aircraft flew high above the Earth’s surface and pointed its sensitive instruments out into the cosmos.
When the universe was still very young, only a few kinds of atoms existed. Scientists believe that around 100,000 years after the big bang, helium and hydrogen combined to make a molecule called helium hydride for the first time. Helium hydride should be present in some parts of the modern universe, but it has never been detected in space — until now.
SOFIA found modern helium hydride in a planetary nebula, a remnant of what was once a Sun-like star. Located 3,000 light-years away near the constellation Cygnus, this planetary nebula, called NGC 7027, has conditions that allow this mystery molecule to form. The discovery serves as proof that helium hydride can, in fact, exist in space. This confirms a key part of our basic understanding of the chemistry of the early universe and how it evolved over billions of years into the complex chemistry of today. The results are published in this week’s issue of Nature.
A vacuum is generally thought to be nothing but empty space. But in fact, a vacuum is filled with virtual particle-antiparticle pairs of electrons and positrons that are continuously created and annihilated in unimaginably short time-scales.
The quest for a better understanding of vacuum physics will lead to the elucidation of fundamental questions in modern physics, which is integral in unraveling the mysteries of space, such as the Big Bang. However, the laser intensity required to forcibly separate the virtual pairs and cause them to appear not as virtual particles but real particles would be 10 million times higher than current laser technology is capable of. This field intensity is the so-called Schwinger limit, named a half-century ago after the American Nobel laureate Julian Schwinger.
In 2018, scientists at Osaka University discovered a novel mechanism that they called a microbubble implosion (MBI). In MBIs, super-high-energy hydrogen ions (relativistic protons) are emitted at the moment when bubbles shrink to atomic size through the irradiation of hydrides with micron-sized spherical bubbles by ultraintense, ultrashort laser pulses.
A few millionths of a second after the Big Bang, the universe was so dense and hot that the quarks and gluons that make up protons, neutrons and other hadrons existed freely in what is known as the quark–gluon plasma. The ALICE experiment at the Large Hadron Collider (LHC) can recreate this plasma in high-energy collisions of beams of heavy ions of lead. However, ALICE, as well as any other collision experiments that can recreate the plasma, cannot observe this state of matter directly. The presence and properties of the plasma can only be deduced from the signatures it leaves on the particles that are produced in the collisions.
In a new article, presented at the ongoing European Physical Society conference on High-Energy Physics, the ALICE collaboration reports the first measurement of one such signature—the elliptic flow—for upsilon particles produced in lead–lead LHC collisions.
The upsilon is a bottomonium particle, consisting of a bottom (often also called beauty) quark and its antiquark. Bottomonia and their charm-quark counterparts, charmonium particles, are excellent probes of the quark–gluon plasma. They are created in the initial stages of a heavy-ion collision and therefore experience the entire evolution of the plasma, from the moment it is produced to the moment it cools down and gives way to a state in which hadrons can form.
It would be the first-ever map of the universe in high-energy X-rays, Nature magazine noted.
Such a map “will be essential to solve the core questions of modern cosmology,” Roscosmos said in a press release. “How do dark energy and dark matter affect formation of the large-scale structure of the Universe? What is [the] cosmological evolution of supermassive black holes?”
The agency added that the telescope, which has reportedly taken decades to develop, is expected to find about “100,000 massive clusters of galaxies” and millions of supermassive black holes ― many of them new to science ― over a four-year survey period.
The concept of super-asymmetry is related to super-symmetry string theory.
In particle physics, “supersymmetry” is a proposed type of space-time symmetry that relates two basic classes of elementary particles: bosons, which have an integer-valued spin, and fermions, which have a half-integer spin. Each particle from one group is associated with a particle from the other, known as its super-partner, the spin of which differs by a half-integer.
While most of the science discussed in the show has it’s basis with real-world science, the concept of super-asymmetry is fairly unique to the world of “The Big Bang Theory”. Amy and Sheldon are working on a new theory or concept for string theory and appear to be on the road to a Nobel Prize.