Toggle light / dark theme

There’s no such thing as a perfect laptop especially when it comes to port options. Some users may prefer to have DisplayPort instead of HDMI or more USB-A ports than USB-C ports. Some may desire MicroSD readers while others might have no use for them. Regardless of preference, all major laptops ship with fixed ports that the manufacturers themselves decided to include or exclude.

The Framework Laptop tackles this issue head on by allowing users to “swap” out certain ports for others. It integrates four Thunderbolt-compatible USB-C ports that are recessed onto the chassis for users to connect special adapters or expansion cards to turn them into MicroSD, HDMI, DisplayPort, or USB-A ports. Thus, users can have four HDMI, four DisplayPort, four USB-A, or even four MicroSD slots if they so choose. The idea is that users can swap out certain ports to better fit their daily workloads instead of being limited to the usual fixed ports.

India has undeniable strengths, too, of course. Its computing and commercial talent makes it natural territory for venture capital. The potential to spawn game-changing startups is there. But the money flowing into venture capital worldwide is not really seeking originality. Like a Hollywood producer, it prefers to back variants of ideas that have already been hits. India is a decent story, but only a few will make decent money from it. The numbers just don’t add up.


The formula for success cannot simply be copied across from America or China | Finance & economics.

A new tool that enables thousands of tiny experiments to run simultaneously on a single polymer chip will let scientists study enzymes faster and more comprehensively than ever before.

For much of human history, animals and plants were perceived to follow a different set of rules than rest of the universe. In the 18th and 19th centuries, this culminated in a belief that living organisms were infused by a non-physical energy or “life force” that allowed them to perform remarkable transformations that couldn’t be explained by conventional chemistry or physics alone.

Scientists now understand that these transformations are powered by enzymes – protein molecules comprised of chains of amino acids that act to speed up, or catalyze, the conversion of one kind of molecule (substrates) into another (products). In so doing, they enable reactions such as digestion and fermentation – and all of the chemical events that happen in every one of our cells – that, left alone, would happen extraordinarily slowly.

A microchip in your lettuce? Why not, says Arm.


Chip designer Arm has unveiled the most complex flexible microchip yet. The PlasticARM is inefficient and slow compared to silicon-based chips, but could be printed onto fabric, paper, and plastic, allowing for what Arm calls the “internet of everything.”

Mitochondrial Quality Control (Mitophagy), CNS Disorders, and Aging — Dr. Spring Behrouz, Ph.D., CEO, Vincere Biosciences Inc. / CEO, Neuroinitiative LLC.


Dr. Bahareh (Spring) Behrouz, PhD, is the CEO of Vincere Biosciences Inc (https://vincerebio.com/), a biotech company focused on developing novel, small molecule therapeutics targeting mitochondrial pathways and the improvement of mitochondrial quality.

Dr. Behrouz is also the CEO of NeuroInitiative, LLC (https://www.neuroinitiative.com/), a computational biology company she co-founded in 2014, which develops simulations of disease using their patented software platform. A core focus of her research at NeuroInitiative is on the elucidation of complex, converging pathways that contribute to the pathogenesis of Parkinson’s disease (PD), a neuro-degenerative brain disorder which dramatically effects movement, which nearly one million people in the U.S. are living with, and 10 million patients worldwide.

Dr. Behrouz received her graduate training at Michigan State University in the laboratory of Dr. John Goudreau and studied differential susceptibility of dopaminergic neuron sub-types in models of PD. She completed her post-doctoral training in the laboratory of Dr. Matthew Farrer at the Mayo Clinic in Jacksonville, where she primarily focused on in-vivo and primary culture models of LRRK2-mediated pathogenesis and was part of the team that discovered a new pathogenic mutation in VPS35.

GPUs up to 12-inches in size are supported.


Intel has revealed its new NUC 11 Extreme, which features its 11th generation CPUs and enough space for a full-size graphics card. It’s a miniature computer that should have enough horsepower to handle modern AAA games.

One of the most important open questions in science is how our consciousness is established. In the 1990s, long before winning the 2020 Nobel Prize in Physics for his prediction of black holes, physicist Roger Penrose teamed up with anaesthesiologist Stuart Hameroff to propose an ambitious answer.

They claimed that the brain’s neuronal system forms an intricate network and that the consciousness this produces should obey the rules of quantum mechanics —the theory that determines how tiny particles like electrons move around. This, they argue, could explain the mysterious complexity of human consciousness.

Penrose and Hameroff were met with incredulity. Quantum mechanical laws are usually only found to apply at very low temperatures. Quantum computers, for example, currently operate at around -272°C. At higher temperatures, classical mechanics takes over. Since our body works at room temperature, you would expect it to be governed by the classical laws of physics. For this reason, the quantum consciousness theory has been dismissed outright by many scientists—though others are persuaded supporters.

Brain–computer interfaces (BCIs) provide bidirectional communication between the brain and output devices that translate user intent into function. Among the different brain imaging techniques used to operate BCIs, electroencephalography (EEG) constitutes the preferred method of choice, owing to its relative low cost, ease of use, high temporal resolution, and noninvasiveness. In recent years, significant progress in wearable technologies and computational intelligence has greatly enhanced the performance and capabilities of EEG-based BCIs (eBCIs) and propelled their migration out of the laboratory and into real-world environments. This rapid translation constitutes a paradigm shift in human–machine interaction that will deeply transform different industries in the near future, including healthcare and wellbeing, entertainment, security, education, and marketing. In this contribution, the state-of-the-art in wearable biosensing is reviewed, focusing on the development of novel electrode interfaces for long term and noninvasive EEG monitoring. Commercially available EEG platforms are surveyed, and a comparative analysis is presented based on the benefits and limitations they provide for eBCI development. Emerging applications in neuroscientific research and future trends related to the widespread implementation of eBCIs for medical and nonmedical uses are discussed. Finally, a commentary on the ethical, social, and legal concerns associated with this increasingly ubiquitous technology is provided, as well as general recommendations to address key issues related to mainstream consumer adoption.