Toggle light / dark theme

https://youtube.com/watch?v=96vtlLnSHG0

Zotac specializes in making small computers, like their Magnus EN980, which packs a lot of powerful hardware into a tiny space. The company has used their proficiency with making compact hardware and applied it to this virtual reality backpack; it’s wireless and battery-powered, so you can explore an open space without having to worry about tripping on any wires.

The promotional video cites the possibility of tripping on wires as the main reason why you’d want one of these, but that justification might not be enough to sell you on it. Wireless VR headsets don’t exist yet, but they will soon. Optoma has been working on a cloud-based wireless VR headset; the reason that other companies haven’t done that yet is because of concerns about lag or reduction in picture quality. Optoma claims their headset doesn’t have these issues, and if that’s true, they could end up competing handily with Sony and Oculus, both of which require the user to remain plugged in at all times. Optoma’s headset won’t launch for another year, so until then, hardware developers have had to come up with some other ways to go wireless with VR.

Zotac’s backpack seems like one possible solution, and it certainly increases the user’s ability to take VR with them on the go. You could take this thing out to an electricity-free cabin in the middle of nowhere, so long as the battery’s charged up. (Also, most people probably go to remote cabins for reasons other than trying out a cool VR headset, but … shhh.)

Read more

Turning on Quantum properties onto a cup of coffee. First step; should be interesting in what researchers discover especially around teleporting. Imaging you’re Dominos pizza with a teleport hub and customer orders a pizza. No longer need a self driving car, or drone; with this technology Dominos can teleport your hot fresh pizza to your house immediately after it is out of the oven.


Small objects like electrons and atoms behave according to quantum mechanics, with quantum effects like superposition, entanglement and teleportation. One of the most intriguing questions in modern science is if large objects – like a coffee cup — could also show this behavior. Scientists at the TU Delft have taken the next step towards observing quantum effects at everyday temperatures in large objects. They created a highly reflective membrane, visible to the naked eye, that can vibrate with hardly any energy loss at room temperature. The membrane is a promising candidate to research quantum mechanics in large objects.

The team has reported their results in Physical Review Letters.

Swing

“Imagine you’re given a single push on a playground swing. Now imagine this single push allows you to gleefully swing non-stop for nearly a decade. We have created a millimeter-sized version of such a swing on a silicon chip”, says prof. Simon Gröblacher of the Kavli Institute of Nanoscience at the TU Delft.

Read more

3059023-poster-p-1-smart-homes-not-until-theyre-less-dependent-on-the-internet

“Buying into a smart home ecosystem is sort of like selecting a holy grail in the Temple of the Sun. Choose poorly, and everything crumbles.”

Read more

Pretty cool!


As Brain-Computer Interface is rapidly developed worldwide, mind-controlled drones turn into sports and weapons of today.

Florida University hosted a sporting event that might give a start to a new generation of high-technology sport involving latest trademark inventions of 21st century — drones and consumer-grade brain-computer interface (BCI).

Drones have become a trademark of 21st century, since development of low-weight, high-capacity batteries and small sophisticated electronic controllers allowed to construct fairly cheap yet very easy to control flying device.

Read more

Over the past few days, Wired has published some articles that give us the closest look yet at the ambitious, enigmatic augmented reality company called Magic Leap. They’ve left us with both a lot of fascinating possibilities and a lot of questions, because most of Magic Leap’s technological explanations are couched in the language of either science fiction or, well, magic. As poetic as “[talking] to the GPU of the brain” and “dreaming with your eyes open” sounds, this is probably the clearest and most interesting description of Magic Leap’s work in the piece:

Read more

Many think author, inventor and data scientist Ray Kurzweil is a prophet for our digital age. A few say he’s completely nuts. Kurzweil, who heads a team of more than 40 as a director of engineering at Google, believes advances in technology and medicine are pushing us toward what he calls the Singularity, a period of profound cultural and evolutionary change in which computers will outthink the brain and allow people—you, me, the guy with the man-bun ahead of you at Starbucks—to live forever. He dates this development at 2045.

Raymond Kurzweil was born February 12, 1948, and he still carries the plain, nasal inflection of his native Queens, New York. His Jewish parents escaped Hitler’s Austria, but Kurzweil grew up attending a Unitarian church. He worshipped knowledge above all, and computers in particular. His grandmother was one of the first women in Europe to earn a Ph.D. in chemistry. His uncle, who worked at Bell Labs, taught Ray computer science in the 1950s, and by the age of 15, Kurzweil was designing programs to help do homework. Two years later, he wrote code to analyze and create music in the style of various famous composers. The program won him the prestigious Westinghouse Science Talent Search, a prize that got the 17-year-old an invitation to the White House. That year, on the game show I’ve Got a Secret, Kurzweil pressed some buttons on a data processor the size of a small car. It coughed out original sheet music that could have been written by Brahms.

After earning degrees in computer science and creative writing at MIT, he began to sell his inventions, including the first optical character recognition system that could read text in any normal font. Kurzweil knew a “reading machine” could help the blind, but to make it work, he first had to invent a text-to-speech synthesizer, as well as a flatbed scanner; both are still in wide use. In the 1980s Kurzweil created the first electronic music keyboard to replicate the sound of a grand piano and many other instruments. If you’ve ever been to a rock concert, you’ve likely seen the name Kurzweil on the back of a synthesizer.

Read more

Again; many problems with AI & IoT all ties back to the infrastructure of things. Focus on fast tracking QC and an interim solution (pre-QC) such as a mix of Nvidia’s GPU, blockchain for financial transactions, etc. to improve the infrastructure and Net then investors will begin to pay more attention to AI, etc.


After more than 60 years since its conceptual inception — and after too many hype-generating moments — AI is yet again making its presence felt in mainstream media.

Following a recent WEF report, many perceive AI as a threat to our jobs, while others even go so far to assert that it poses a real threat to humanity itself.

What is clear for the time being is that there are many questions that still remain unanswered: Can we actually create conscious machines that have the ability to think and feel? What we do we mean by the word conscious in the first place? What is the accurate definition of intelligence? And what are the implications of combining the Internet of Things (IoT) with intelligence?

Read more

We’re not there yet. First step will be BMIs which last week’s announcement of the 1st successful human BMI enabling a paralyzed man to use his hands again. Once we perfect BMI plus bio computing as well as other nano technologies we can then say we’re in the age of real HCI and Singularity.

Read more

Very nice; Silicon based Quantum Laser has been achieved. Imagine what this does for ISPs and other communications. smile


A team of researchers from across the country, led by Alexander Spott, University of California, Santa Barbara, USA, have built the first quantum cascade laser on silicon. The advance may have applications that span from chemical bond spectroscopy and gas sensing, to astronomy and free-space communications.

Integrating lasers directly on chips is challenging, but it is much more efficient and compact than coupling external light to the chips. The indirect bandgap of silicon makes it difficult to build a laser out of silicon, but diode lasers can be built with III-V materials such as InP or GaAs. By directly bonding an III-V layer on top of the silicon wafer and then using the III-V layers to generate gain for the laser, this same group has integrated a multiple quantum well laser on silicon that operates at 2 µm. Limitations in diode lasers prevent going to longer wavelengths where there are many more applications, so the group turned their attention to using quantum cascade lasers instead.

Building a on silicon was a challenging task made more difficult by the fact that becomes heavily absorptive at longer wavelengths in the mid-infrared.

Read more