Toggle light / dark theme

How do IBM scientists keep qubits colder than outer space?

IBM quantum physicists Dr. Stefan Filipp and Dr. Andreas Fuhrer (pictured) will be discussing quantum computing live from the IBM Zurich Research Lab, and will demonstrate how they keep qubits so cold, explain why, and take your questions.

Join us on Friday, Feb. 23 at 16:00 Paris time / 10:00 am EST.

Read more

Oganesson (Og) is the heaviest chemical element in the periodic table, but its properties have proved difficult to measure since it was first synthesised in 2002.

Now an advanced computer simulation has filled in some of the gaps, and it turns out the element is even weirder than many expected.

At the atomic level, oganesson behaves remarkably differently to lighter elements in several key ways – and that could provide some fundamental insights into the basics of how these superheavy elements work.

Read more

Although mobile devices such as tablets and smartphones let us communicate, work and access information wirelessly, their batteries must still be charged by plugging them in to an outlet. But engineers at the University of Washington have for the first time developed a method to safely charge a smartphone wirelessly using a laser.

As the team reports in a paper published online in December in the Proceedings of the Association for Computing Machinery on Interactive, Mobile, Wearable & Ubiquitous Technologies, a narrow, invisible beam from a laser emitter can deliver charge to a sitting across a room — and can potentially charge a smartphone as quickly as a standard USB cable. To accomplish this, the team mounted a thin power cell to the back of a smartphone, which charges the smartphone using power from the laser. In addition, the team custom-designed safety features — including a metal, flat-plate heatsink on the smartphone to dissipate from the laser, as well as a reflector-based mechanism to shut off the laser if a person tries to move in the charging beam’s path.

“Safety was our focus in designing this system,” said co-author Shyam Gollakota, an associate professor in the UW’s Paul G. Allen School of Computer Science & Engineering. “We have designed, constructed and tested this laser-based charging system with a rapid-response safety mechanism, which ensures that the laser emitter will terminate the charging beam before a person comes into the path of the laser.”

Read more

Try a quick experiment: Take two flashlights into a dark room and shine them so that their light beams cross. Notice anything peculiar? The rather anticlimactic answer is, probably not. That’s because the individual photons that make up light do not interact. Instead, they simply pass each other by, like indifferent spirits in the night.

But what if could be made to interact, attracting and repelling each other like atoms in ordinary matter? One tantalizing, albeit sci-fi possibility: sabers — beams of light that can pull and push on each other, making for dazzling, epic confrontations. Or, in a more likely scenario, two beams of light could meet and merge into one single, luminous stream.

It may seem like such optical behavior would require bending the rules of physics, but in fact, scientists at MIT, Harvard University, and elsewhere have now demonstrated that photons can indeed be made to interact — an accomplishment that could open a path toward using photons in quantum computing, if not in lightsabers.

Read more