Toggle light / dark theme

In a recently published white paper, imec provided an overview of the building blocks for the next generation of medical implants. Integrating the building blocks into smart chips provides a comprehensive solution that is smaller, smarter and more connected.

MS say that Malaysian semiconductor fabrication plants are back to 100%. auto chip shortage is now in the rear-view mirror I hope they are correct. I’d like to hear it from auto producers too though. Toyota, at least, is upbeat though:

With feature updates galore, paradigm-changing DDR5 memory, and much more, the technology backing Intel’s 12th Generation Core CPUs is just as interesting as the chips themselves. We’ve got a breakdown.

Physicists have created a new ultra-thin two-layer material with quantum properties that normally require rare earth compounds. This material, which is relatively easy to make and does not contain rare earth metals, could provide a new platform for quantum computing and advance research into unconventional superconductivity and quantum criticality.

The researchers showed that by starting from seemingly common materials, a radically new quantum state of matter can appear. The discovery emerged from their efforts to create a quantum spin liquid which they could use to investigate emergent quantum phenomena such as gauge theory. This involves fabricating a single layer of atomically thin tantalum disulfide, but the process also creates islands that consist of two layers.

MX Linux 21 AHS is finally available with Linux Kernel 5.14 and updated open-source graphics stack. But, is it for everyone?


MX Linux 21 was officially unveiled last month while introducing a new Fluxbox edition. However, the Advanced Hardware Support (AHS) ISO was not a part of it.

Recently, MX Linux announced the availability of MX Linux 21 AHS and a new AHS repo for existing MX Linux 21 users.

In this article, let us explore more about it.

A cell stores all of its genetic material in its nucleus, in the form of chromosomes, but that’s not all that’s tucked away in there. The nucleus is also home to small bodies called nucleoli — clusters of proteins and RNA that help build ribosomes.

Using computer simulations, MIT chemists have now discovered how these bodies interact with chromosomes in the nucleus, and how those interactions help the nucleoli exist as stable droplets within the nucleus.

Their findings also suggest that chromatin-nuclear body interactions lead the genome to take on a gel-like structure, which helps to promote stable interactions between the genome and transcription machineries. These interactions help control gene expression.

NVIDIA CMP 170HX cryptomining card, Source: Linus Tech Tips.

Due to the very limited availability and the high price of this card, there are not actually that many pictures of CMP 170HX on the Internet. Fortunately, Linus was brave enough to take a look under the card’s hood. As it turns out, the GPU has a very large heat spreader completetly covering the whole interposer area.

The ability to precisely control and change properties of a photon, including polarization, position in space, and arrival time, gave rise to a wide range of communication technologies we use today, including the Internet. The next generation of photonic technologies, such as photonic quantum networks and computers, will require even more control over the properties of a photon.

One of the hardest properties to change is a photon’s color, otherwise known as its frequency, because changing the frequency of a photon means changing its energy.

Today, most frequency shifters are either too inefficient, losing a lot of light in the , or they can’t convert light in the gigahertz range, which is where the most important frequencies for communications, computing, and other applications are found.

Scientists from the RIKEN Center for Emergent Matter Science and collaborators have shown that they can manipulate single skyrmions—tiny magnetic vortices that could be used as computing bits in future ultra-dense information storage devices—using pulses of electric current, at room temperature.

Skyrmions—tiny particles that can be moved under small electric currents several orders lower than those used for driving magnetic domain walls—are being studied in the hope of developing promising applications in data storage devices with low energy consumption. The key to creating spintronics devices is the ability to effectively manipulate, and measure, a single tiny vortex.

Most research to date has focused on the dynamics for skyrmions a micrometer or more in size or skyrmion clusters stabilized below room temperature. For the current research, published in Nature Communications, the researchers used a thin magnetic plate made up of a compound of cobalt, zinc, and manganese, Co9Zn9Mn2, which is known as a chiral-lattice magnet. They directly observed the dynamics of a single skyrmion, with a size of 100 nanometers, at room temperature using Lorentz transmission electron microscopy. They were able to track the motions of the skyrmion and control its Hall motion directions by flipping the magnetic field, when they subjected it to ultrafast pulses of electric current—on the scale of nanoseconds.