Toggle light / dark theme

IBM and the University of Tokyo will form the Japan – IBM Quantum Partnership, a broad national partnership framework in which other universities, industry, and government can engage. The partnership will have three tracks of engagement: one focused on the development of quantum applications with industry; another on quantum computing system technology development; and the third focused on advancing the state of quantum science and education.

Under the agreement, an IBM Q System One, owned and operated by IBM, will be installed in an IBM facility in Japan. It will be the first installation of its kind in the region and only the third in the world following the United States and Germany. The Q System One will be used to advance research in quantum algorithms, applications and software, with the goal of developing the first practical applications of quantum computing.

IBM and the University of Tokyo will also create a first-of-a-kind quantum system technology center for the development of hardware components and technologies that will be used in next generation quantum computers. The center will include a laboratory facility to develop and test novel hardware components for quantum computing, including advanced cryogenic and microwave test capabilities.

Editor’s note: Geoff Woollacott is Senior Strategy Consultant and Principal Analyst at Technology Business Research. IBM and NC State are coperating on quantum computing development.

HAMPTON, N.H. – JPMorgan Chase announced on Jan. 22 the hiring of Marco Pistoia from IBM. A 24-year IBM employee with numerous patents to his credit, Pistoia most recently led an IBM team responsible for quantum computing algorithms. Algorithm development will be key to developing soundly engineered quantum computing systems that can deliver the business outcomes enterprises seek at a faster and more accurate pace than current classical computing systems.

A senior hire into a flagship enterprise in the financial services industry is the proverbial canary in the coal mine, as TBR believes such actions suggest our prediction of quantum achieving economic advantage by 2021 remains on target. Quantum executives discuss the three pillars of quantum commercialization as being:

Drug development is an extremely arduous and costly process, and failure rates in clinical trials that test new drugs for their safety and efficacy in humans remain very high. According to current estimates, only 13.8% of all tested drugs demonstrate ultimate clinical success and obtain approval by the Food and Drug Administration (FDA). There are also increasing ethical concerns relating to the use of animal studies. As a result, there has been a world-wide search to find replacements for animal models.

To help address this bottleneck in drug development, Donald Ingber, M.D., Ph.D., and his team at Harvard’s Wyss Institute for Biologically Inspired Engineering, developed the first human “Organ-on-a-Chip” (Organ Chip) model of the lung that recapitulates human organ level physiology and pathophysiology with high fidelity, which was reported in Science in 2010. Organ Chips are microfluidic culture devices composed of a clear flexible polymer the size of a computer memory stick, which contains two parallel hollow channels that are separated by a porous membrane. Organ-specific cells are cultured on one side of the membrane in one of the channels, and vascular endothelial cells recapitulating a blood vessel line the other, while each channel is independently perfused with cell type-specific medium.

New transhumanism and biohacking story out by one of Asia’s most influential newspapers: South China Morning Post:


From brain supplements to chip implants to nootropics, humans are using technology, medicine and extreme diets to improve their brainpower, health and longevity.

University of California, Berkeley, scientists have created a blue light-emitting diode (LED) from a trendy new semiconductor material, halide perovskite, overcoming a major barrier to employing these cheap, easy-to-make materials in electronic devices.

In the process, however, the researchers discovered a fundamental property of perovskites that may prove a barrier to their widespread use as solar cells and transistors.

Alternatively, this unique property may open up a whole new world for perovskites far beyond that of today’s standard semiconductors.

Different kinds of materials can play different roles when it comes to controlling heat. If we want to keep our home warm in the depths of winter, insulating layers in our walls can help to lock it in. If we want to keep things cool, thermally conductive materials like those used in computer processors can help carry it away. But could one material have it both ways? A new breakthrough suggests that it could, made by a team of scientists who believe heat needn’t just be a one way street.

The research was carried out by scientists at the University of Bayreuth and the Max Planck Institute for Polymer Research, who sought to combine the thermally insulating properties of materials like polystyrene, with the thermally conductive properties of heavy metals often used to dissipate heat.

Their breakthrough boils down to a way of manipulating the way heat travels, which is through the oscillation of individual molecules that pass on their movement to neighboring molecules.

A team of researchers from the University of Washington has found evidence that the Earth’s atmosphere approximately 2.7 billion years ago might have been up to 70 percent carbon dioxide. In their paper published in the journal Science Advances, the group describes their study of micrometeorites and what they learned from them.

As scientists continue to study Earth’s past, they look for evidence of what environmental conditions might have been like in hopes of understanding how life arose. One important piece of the puzzle is the atmosphere. Scientists suspect that its ingredients were far different billions of years ago, but they have little in the way of evidence to prove it. In this new endeavor, the researchers looked to micrometeorites as a possible source of clues. Their thinking was that any material from space that made its way to the surface of the planet had to travel first through the atmosphere—and any material that travels through the atmosphere is highly influenced by its materials, largely due to the high temperatures of atmospheric entry.

Several years ago, researchers found a host of micrometeorites that had landed on Earth approximately 2.7 billion years ago, putting them squarely in the Archean Eon—the time during which it is believed life first appeared on Earth. Study of the micrometeorites showed that they contained high levels of iron along with wüstite. Wüstite forms when iron is exposed to oxygen, but not on the Earth’s surface. It must have been created as the grain-sized meteorites burned and fell through the Earth’s atmosphere. Intrigued by the finding, the researchers created a to simulate the conditions that would lead to the creation of materials such as wüstite on a rock falling through the atmosphere.

Circa 2017


Chris Roberts built worlds for games such as Wing Commander at Electronic Arts’ Origin at the dawn of 3D games a couple of decades ago.

Those games were technologically limited, but they still inspired the imagination. Now Roberts is now head of his own company, Roberts Space Industries, and he’s contemplating how to use much more computing power to run the upcoming Star Citizen and other games of the future. He spoke about this challenge with Rich Hilleman, director of PMT at Amazon Game Studios and former chief creative director at EA.

Can this “shed new light” on the scourge To explore new physical means in controlling locusts, semiconductor continuous diode laser (wavelength 808nm, power 2W) was used to evaluate the effect of laser irradiation on locusts(Locusta Migratoria Manilensis) and host plants (fresh Gramineous Plant Green Bristle Grass).At different distances and time, the heads of Ⅰ-Ⅲ instar nymphs and Ⅵ-Ⅴ instar nymphs were irradiated, and the death rate was observed two hours, two days and three days after treatment;the leaves and stems of host plants were irradiated, and the growth state was observed. The results indicated that the locusts were killed when power density nears the tissue’s thermal damage threshold.

Something to look forward to: Some of the biggest problems that need solving in the enterprise world require sifting through vast amounts of data and finding the best possible solution given a number of factors and requirements, some of which are at.