Researchers have developed a new approach to printed electronics which allows ultra-low power electronic devices that could recharge from ambient light or radiofrequency noise. The approach paves the way for low-cost printed electronics that could be seamlessly embedded in everyday objects and environments.
Electronics that consume tiny amounts of power are key for the development of the Internet of Things, in which everyday objects are connected to the internet. Many emerging technologies, from wearables to healthcare devices to smart homes and smart cities, need cost-effective transistors and electronic circuits that can function with minimal energy use.
Printed electronics are a simple and inexpensive way to manufacture electronics that could pave the way for low-cost electronic devices on unconventional substrates—such as clothes, plastic wrap or paper—and provide everyday objects with ‘intelligence’.
A collaboration between researchers from The University of Western Australia and The University of California Merced has provided a new way to measure tiny forces and use them to control objects.
The research, published recently in Nature Physics, was jointly led by Professor Michael Tobar, from UWA’s School of Physics, Mathematics and Computing and Chief Investigator at the Australian Research Council Centre of Excellence for Engineered Quantum Systems and Dr. Jacob Pate from the University of Merced.
Professor Tobar said that the result allowed a new way to manipulate and control macroscopic objects in a non-contacting way, allowing enhanced sensitivity without adding loss.
A team of physicists led by Professor Patrick Windpassinger at Johannes Gutenberg University Mainz (JGU) has successfully transported light stored in a quantum memory over a distance of 1.2 millimeters. They have demonstrated that the controlled transport process and its dynamics has only little impact on the properties of the stored light. The researchers used ultra-cold rubidium-87 atoms as a storage medium for the light as to achieve a high level of storage efficiency and a long lifetime.
“We stored the light by putting it in a suitcase so to speak, only that in our case the suitcase was made of a cloud of cold atoms. We moved this suitcase over a short distance and then took the light out again. This is very interesting not only for physics in general, but also for quantum communication, because light is not very easy to ‘capture’, and if you want to transport it elsewhere in a controlled manner, it usually ends up being lost,” said Professor Patrick Windpassinger, explaining the complicated process.
The controlled manipulation and storage of quantum information as well as the ability to retrieve it are essential prerequisites for achieving advances in quantum communication and for performing corresponding computer operations in the quantum world. Optical quantum memories, which allow for the storage and on-demand retrieval of quantum information carried by light, are essential for scalable quantum communication networks. For instance, they can represent important building blocks of quantum repeaters or tools in linear quantum computing. In recent years, ensembles of atoms have proven to be media well suited for storing and retrieving optical quantum information. Using a technique known as electromagnetically induced transparency (EIT), incident light pulses can be trapped and coherently mapped to create a collective excitation of the storage atoms. Since the process is largely reversible, the light can then be retrieved again with high efficiency.
Materials scientists who work with nano-sized components have developed ways of working with their vanishingly small materials. But what if you could get your components to assemble themselves into different structures without actually handling them at all?
Verner Håkonsen works with cubes so tiny that nearly 5 billion of them could fit on a pinhead.
He cooks up the cubes in the NTNU NanoLab, in a weird-looking glass flask with three necks on the top using a mixture of chemicals and special soap.
A teenage “computer genius” could be on the path to sainthood after he was beatified by the Catholic Church.
Carlo Acutis, who died of leukemia at the age of 15 in 2006, was beatified on Saturday in the town of Assisi, Italy.
Beatification is the penultimate step in the sainthood process, and means the candidate can be referred to as “blessed,” and that one miracle has been confirmed in his or her name.
The blockchain revolution, online gaming and virtual reality are powerful new technologies that promise to change our online experience. After summarizing advances in these hot technologies, we use the collective intelligence of our TechCast Experts to forecast the coming Internet that is likely to emerge from their application.
Here’s what learned:
Security May Arrive About 2027 We found a sharp division of opinion, with roughly half of our experts thinking there is little or no chance that the Internet would become secure — and the other half thinks there is about a 60% probability that blockchain and quantum cryptography will solve the problem at about 2027. After noting the success of Gilder’s previous forecasts, we tend to accept those who agree with Gilder.
DecentralizationLikely About 2028–2030 We find some consensus around a 60% Probability and Most Likely Year About 2028–2030. The critical technologies are thought to focus on blockchain, but quantum, AI, biometrics and the Internet of things (IoT) also thought to offer localizing capabilities.
Immersion Highly Likely About 2031–2032 The experts show good agreement on a 70% probability that immersive capabilities will arrive about 2031–2032. They also suggest a variety of technologies will make this possible: blockchain, VR and AR, gaming, AI, IoT and a useful brain-computer interface.
EMERGING INTERNET TECHNOLOGIES
The Blockchain Revolution George Gilder’s latest book, Life After Google, is a landmark forecast on what he calls the “cryptocosm.” Like his earlier book, Microcosm, which forecast the Information Technology Revolution caused by microchips, followed by Telecosm, which forecast today’s explosion of wireless technology, the cryptocosm extends major advances in blockchain technology into all spheres of the Internet.
Gilder thinks the cryptocosm will produce a web that overthrows the top-down monopolies of Google, Facebook, Amazon and the other tech giants that have created a web that is insecure, clumsy and destined to fail. Using stunning examples of brilliant technological advances by pioneering entrepreneurs, Life After Google promises an Internet that is secure, private, decentralized and controlled by users rather than the tech giants.
In Gilder’s terms:
“Google is hierarchical. Life after Google will be heterarchical. Google is top-down. Life after Google will be bottom-up. Google rules by the insecurity of the lower layers in the stack. A porous stack enables the money and power to be sucked up to the top. In Life after Google, a secure ground state in the individual, registered and timestamped in a digital ledger, will prevent this suction of hierarchical power.”
A telling sign is that China is leading the blockchain revolution. In October of 2019, Premier Xi Jinping called on the nation to “seize the opportunity of blockchain technology as a new security architecture for the Internet.” In April 25, 2020, China launched its national blockchain platform, the Blockchain Service Network (BSN). In time, Xi plans to replace their national currency and other currencies around the globe with new digital systems.
Advanced Gaming
Related breakthroughs are underway as gaming technology becomes vividly immersive, interactive, intelligent and 3 dimensional — creating the famed Metaverse pioneered a
few years ago by Second Life. Nintendo’s Animal Crossing, Facebook’s Horizon, Epic Games’ Fortnite, Minecraft, and other contenders are blazing a path that seems likely to move virtual reality from expensive headsets into everyday life on the web. There were 2.6 billion people playing games globally in 2017, producing revenue of $100 billion.
Jacob Novak, CEO Genvid Technologies, expects the web to become “a mix of game engines, interactivity and video… game engines will be the primary way people will have interfaces with the Internet.”
Travis Scott, a celebrated gamer in Fortnite, thinks “As VR and AR evolve, we’ll be able to build truly immersive virtual worlds.”
Virtual Reality
After years of sluggish growth in VR, we are seeing the convergence of the Internet, high-resolution graphical interfaces, greater computing power, motion sensors, 3D modeling, digital games, and social networking. We also see the rise of augmented reality (AR) – digital information laid over the real-world environment. Experts think these diverse virtual environments will converge into a virtual metaverse. TechCast expects VR to reach mainstream adoption about 2023 + 3/- 1 years and the market will reach about US$550 billion when it hits saturation level about 2030.
VR is also finding its way into business applications. Here’s how Kevin Cardona, head of innovation at BNP Paribas, said it benefits their company: “We are truly convinced that we need to invest in the technology because it will help us to be a company active in 50 countries around the world with clients all over the world.”
Here are other prominent forecasts:
Facebook’s Mark Zuckerberg thinks “Immersive 3D is the obvious next thing after video.”
Heather Bellini, an executive at Goldman Sachs, thinks: “VR and AR will be as transformative as the smartphone.”
Jim Blascovich and Jeremy Bailenson, authors of Infinite Reality, expect a future where “your avatar fills in for you at virtual meetings while you do something more important.”
COLLECTIVE INTELLIGENCE OF TECHCAST EXPERTS
After giving the TechCast experts this background information on leading technologies, we asked them to estimate the prospects for security, decentralization and immersion on the Internet. Results are summarized below.
Security
The most striking feature of our data shows dramatically different views on the prospects for improving security. One group of 8 responses averages less than a 20% probability this will happen, and another group of 9 responses averages more than an 80% probability. A similar bi-modal distribution shows 10 people with an average “most likely year” of about 2027, while another group of 8 averages much later than 2040. The good news is that both groups seem to agree that blockchain and quantum cryptography are the likely technologies to make this happen, with the help of AI.
With such starkly divided opinion, additional insight seems needed to reconcile this impasse. Both cannot be correct. Yes, George Gilder’s claim is hard to accept, but he has been proven correct on similar forecasts. That’s why The Economist called him “America’s foremost technology prophet.”
Here’s how Gilder sums up his forecast in Life After Google: “Some thousands of companies you’ve never heard of are investing billions in that effort [to fix the lack of security on the internet]. Collectively they will give birth to a new network whose most powerful architectural imperative will be security of transactions… So fundamental will security be to this new system that it’s very name will be derived from it. It will be the cryptocosm…”
Marc Andreessen, the billionaire who invented the first web browser, endorsed Gilder’s forecast for blockchain when he told The Washington Post: “This is the big breakthrough. This is the thing we’ve been waiting for… [Gilder] should get the Nobel prize… Hundreds or thousands of applications and companies that could get built on top [of this]…”
Looking over this evidence, we are more impressed by Gilder and his supporters. Our best forecast is that blockchain and quantum cryptography, along with a dash of AI, are likely to introduce a secure form of Internet about 2027. It may also require tougher laws, and it may not be perfect as some glitches are always possible, of course. But TechCast thinks it is coming and long overdue. Serious doubts are normal, of course, but we think the doubts may be what Arthur C. Clarke attributed to “failures of imagination and will.”
Decentralization
The possibility of decentralizing the web into a bottom up system that is no longer dominated by the big tech giants seems more plausible to our respondents. There remains a wide distribution of estimates in the bar charts below, but not a bi-polar distribution. Although many think there is zero probability this will happen, other responses form a fairly normal distribution averaging about 60%. Timing is also less divided, suggesting that these changes are likely to arrive about 2028–2030. The responsible technologies are thought to focus on blockchain, but quantum, AI, biometrics and the Internet of things (IoT) also thought to offer localizing capabilities. I suspect George Gilder would largely agree with this forecast.
The need to decentralize control is gaining some traction. Dfinity is building what it calls the internet computer, a decentralized technology spread across a network of independent data centers that allows software to run anywhere on the internet, rather than in server farms that are increasingly controlled by large firms. It’s planning a public release later this year. However, a free-for-all internet could make it difficult to hold app makers accountable. It could also require a decentralized form of governance which could lead to infighting. It’s not the first to try to remake the internet, so can it succeed where others have failed? Read the full story.
Immersion
Unlike Security and Decentralization, our experts tend to agree on the feasibility of sensory immersion in the Internet. The bar charts show a distribution centered around 70% probability and a most likely year of 2031–2032 when immersion arrives. They also suggest a variety of technologies will make this possible: blockchain, VR and AR, gaming, AI, IoT and a useful brain-computer interface. Gilder would be proud of these results.
Despite pockets of doubt and uncertainty, we think this study tells a compelling story about evolution of the Internet. The continuing advance of computer power, possibly using quantum, nanotech and photonic technologies, is likely to make complex blockchain platforms feasible over the coming decade. Along with applications of quantum crypto and AI, a new generation of Web systems is likely to greatly improve security and move control from tech companies to individuals. Some confusion and security failures will remain, of course, but glitches will be accepted by a younger cohort of users. The development of richer Internet experiences using VR/AR/XR, biometrics, AI, the IoT and holograms is very likely to bloom into the Metaverse long anticipated. Obviously, many other trends will also play important roles in the new Internet, as noted in our experts’ comments.
The strategic implications should be formidable. The status and control of the large tech companies is likely to shift to users, and the Internet service providers (Verizon, Comcast, etc.) may face competition from satellite systems flooding the air with cheap and abundant access. Apple and Elon Musk are launching satellites even now and expect to envelop the Earth with high-capacity broadband in a year or two. In addition to fierce competition from these new sources, the entire supply chain of ICT equipment and services will be disrupted by an advanced generation of suppliers. Users should gain more sophisticated and immersive capabilities that are needed for the high-tech society ahead.
CONCLUSION
This is small study, but TechCast thinks it illustrates the power of using collective intelligence to provide authoritative strategic analyses of hot topics. This study outlines the new Internet architecture that promises to revolutionize life online. The normal doubts are there, of course, but this authoritative analysis strongly indicates that we should see a different Internet emerge during this decade that is secure, decentralized and immersive.
Physics theory suggests that exotic excitations can exist in the form of bound states confined in the proximity of topological defects, for instance, in the case of Majorana zero modes that are trapped in vortices within topological superconducting materials. Better understanding these states could aid the development of new computational tools, including quantum technologies.
One phenomenon that has attracted attention over the past few years is “braiding,” which occurs when electrons in particular states (i.e., Majorana fermions) are braided with one another. Some physicists have theorized that this phenomenon could enable the development of a new type of quantum technology, namely topological quantum computers.
Researchers at Pennsylvania State University, University of California-Berkeley, Iowa State University, University of Pittsburgh, and Boston University have recently tested the hypothesis that braiding also occurs in particles other than electrons, such as photons (i.e., particles of light). In a paper published in Nature Physics, they present the first experimental demonstration of braiding using photonic topological zero modes.
The U.S. Defense Intelligence Agency awarded nearly $800 million in contacts to two major defense contractors to improve data storage and network modernization.
The DIA, a military intelligence agency, chose Northrop Grumman to deliver its Transforming All-Source Analysis with Location-Based Object Services (TALOS) program, which focuses on building new big data systems. The contract is worth $690 million. A spokesperson for Northrop Grumman declined to provide the performance period.
The DIA made two awards to Northrop Grumman and GDIT.
NASA said Saturday that the launch of four astronauts on SpaceX’s first operational Crew Dragon mission to the International Space Station has been delayed from Oct. 31 until “no sooner than early-to-mid November,” allowing time for SpaceX to resolve an issue with Falcon 9 rocket engines that halted a recent launch attempt with a GPS navigation satellite.
The engine concern appeared during an Oct. 2 launch attempt of a Falcon 9 rocket with a GPS satellite at Cape Canaveral, prompting computers controlling the final seconds of the countdown to abort the mission just two seconds prior to liftoff.
Elon Musk, SpaceX’s founder and CEO, tweeted after the abort that the countdown was stopped after an “unexpected pressure rise in the turbomachinery gas generator,” referring to equipment used on the rocket’s Merlin main engines. The gas generators on the Merlin 1D engines drives the engines’ turbopumps.