Toggle light / dark theme

When a black hole is actively feeding, something strange can be observed: enormously powerful jets of plasma shoot from its poles, at velocities approaching light speed.

Given the intense gravitational interactions at play, exactly how those jets form is a mystery. But now, using computer simulations, a team of physicists has hit upon an answer — particles seeming to have “negative energy” extract energy from the black hole and redirect it to the jets.

And this theory has, for the first time, united two different and seemingly irreconcilable theories about how energy can be extracted from a black hole.

Michigan State University researchers have discovered that one of the most important reactions in the universe can get a huge and unexpected boost inside exploding stars known as supernovae.

This finding also challenges ideas behind how some of the Earth’s heavy elements are made. In particular, it upends a theory explaining the planet’s unusually high amounts of some forms, or isotopes, of the elements ruthenium and molybdenum.

“It’s surprising,” said Luke Roberts, an assistant professor at the Facility for Rare Isotope Beams and the Department of Physics and Astronomy, at MSU. Roberts implemented the computer code that the team used to model the environment inside a supernova. “We certainly spent a lot of time making sure the results were correct.”

JILA researchers have developed tools to “turn on” quantum gases of ultracold molecules, gaining control of long-distance molecular interactions for potential applications such as encoding data for quantum computing and simulations.

The new scheme for nudging a down to its lowest energy state, called quantum degeneracy, while suppressing that break up finally makes it possible to explore exotic quantum states in which all the molecules interact with one another.

The research is described in the Dec. 10 issue of Nature. JILA is a joint institute of the National Institute of Standards and Technology (NIST) and the University of Colorado Boulder.

For decades, one material has so dominated the production of computer chips and transistors that the tech capital of the world—Silicon Valley—bears its name. But silicon’s reign may not last forever.

MIT researchers have found that an alloy called InGaAs (indium gallium arsenide) could hold the potential for smaller and more energy efficient . Previously, researchers thought that the performance of InGaAs transistors deteriorated at small scales. But the new study shows this apparent deterioration is not an intrinsic property of the material itself.

The finding could one day help push computing power and efficiency beyond what’s possible with silicon. “We’re really excited,” said Xiaowei Cai, the study’s lead author. “We hope this result will encourage the community to continue exploring the use of InGaAs as a channel material for transistors.”

Researchers have found a way to protect highly fragile quantum systems from noise, which could aid in the design and development of new quantum devices, such as ultra-powerful quantum computers.

The researchers, from the University of Cambridge, have shown that microscopic particles can remain intrinsically linked, or entangled, over long distances even if there are random disruptions between them. Using the mathematics of quantum theory, they discovered a simple setup where entangled particles can be prepared and stabilized even in the presence of noise by taking advantage of a previously unknown symmetry in .

Their results, reported in the journal Physical Review Letters, open a new window into the mysterious quantum world that could revolutionize future technology by preserving in , which is the single biggest hurdle for developing such technology. Harnessing this capability will be at the heart of ultrafast quantum computers.

Quantum computing startup IonQ today announced its road map for the next few years — following a similar move from IBM in September — and it’s quite ambitious, to say the least.

At our Disrupt event earlier this year, IonQ CEO and president Peter Chapman suggested that we were only five years away from having desktop quantum computers. That’s not something you’ll likely hear from the company’s competitors — who also often use a very different kind of quantum technology — but IonQ now says that it will be able to sell modular, rack-mounted quantum computers for the data center in 2023 and that by 2025, its systems will be powerful enough to achieve broad quantum advantage across a wide variety of use cases.

In an interview ahead of today’s announcement, Chapman showed me a prototype of the hardware the company is working on for 2021, which fits on a workbench. The actual quantum chip is currently the size of a half-dollar and the company is now working on essentially putting the core of its technology on a single chip, with all of the optics that make its system work integrated.