Toggle light / dark theme

Alexandre Zanghellini can’t help but think about what makes up the world around him. Sitting in a conference room, Zanghellini considered the paint on the walls, the table, the window shades, the plastic chairs. It’s all oil.

“The entire world is made from oil. We just don’t realize it,” he said.

Zanghellini’s job, as the CEO of Seattle-based synthetic biology company Arzeda, is to reconsider how we make the basic molecules that go into anything and everything in the human world. And he has a bias for processes that use living organisms. “The tools of biology, proteins, are better at doing chemistry than chemists,” he said.

Read more

The periodic table of chemical elements turns 150 this year. The anniversary is a chance to shine a light on particular elements – some of which seem ubiquitous but which ordinary people beyond the world of chemistry probably don’t know much about.

One of these is , which was the subject of my postgraduate degrees in chemistry, and which I have been studying for almost 30 years. In chemistry, gold can be considered a late starter when compared to most other metals. It was always considered to be chemically “inert” – but in recent decades it has flourished and a variety of interesting applications have emerged.

Read more

Instead of throwing away your broken boots or cracked toys, why not let them fix themselves? Researchers at the University of Southern California Viterbi School of Engineering have developed 3D-printed rubber materials that can do just that.

Assistant Professor Qiming Wang works in the world of 3D printed materials, creating new functions for a variety of purposes, from flexible electronics to sound control. Now, working with Viterbi students Kunhao Yu, An Xin, and Haixu Du, and University of Connecticut Assistant Professor Ying Li, they have made a new material that can be manufactured quickly and is able to repair itself if it becomes fractured or punctured. This material could be game-changing for industries like shoes, tires, soft robotics, and even electronics, decreasing manufacturing time while increasing product durability and longevity.

The material is manufactured using a 3D printing method that uses photopolymerization. This process uses light to solidify a liquid resin in a desired shape or geometry. To make it self-healable, they had to dive a little deeper into the chemistry behind the material.

Read more

What goes into making plants taste good? For scientists in MIT’s Media Lab, it takes a combination of botany, machine-learning algorithms, and some good old-fashioned chemistry.

Using all of the above, researchers in the Media Lab’s Open Agriculture Initiative report that they have created that are likely more delicious than any you have ever tasted. No is involved: The researchers used computer algorithms to determine the optimal growing conditions to maximize the concentration of flavorful molecules known as .

But that is just the beginning for the new field of “cyber agriculture,” says Caleb Harper, a principal research scientist in MIT’s Media Lab and director of the OpenAg group. His group is now working on enhancing the human disease-fighting properties of herbs, and they also hope to help growers adapt to changing climates by studying how crops grow under different conditions.

Read more

A century ago, the periodic table looked much different than it does today! It had blank spots throughout, and the entire bottom row – the actinides – were not even part of the table as most of those elements did not exist in nature and had not been created in the lab. But researchers theorized their existence. And starting in the 1930s scientists at Lawrence Berkeley National Laboratory – or, the Rad Lab, as it was called then – began building the big machines and assembling the teams of scientists and engineers to chase those elements down.

Over the next several decades Berkeley Lab researchers were credited with discovering, Lab researchers were credited with discovering, or creating collaboratively with other labs, #16elements. Read more here.

In this video, Berkeley Lab scientists Lee Bernstein, Barbara Jacak, Jose Alonso, Jacklyn Gates, Rebecca Abergel, and Frances Houle tell the story of these incredible scientific discoveries.

Full story » https://newscenter.lbl.gov/2019/01/28/16-elements-berkeley-labs-contributions-to-the-periodic-table/

Explore more » http://periodictable.lbl.gov

Do you have a favorite element? Tweet your selfie video to us using #MyFaveElement to tell us your story!

Read more

Chemistry researchers at Oregon State University have patented a method for making anti-leukemia compounds that until now have only been available via an Asian tree that produces them.

The synthesis of cephalotaxine and homoharringtonine (HHT) paves the way toward less-expensive, more readily available leukemia drugs whose production is not subject to the risks and inefficiencies associated with harvesting .

Also, the synthesis of cephalotaxine opens the door to preparing other, structurally related compounds for evaluation as potential new cancer drugs.

Read more

Carbon monoxide detectors in our homes warn of a dangerous buildup of that colorless, odorless gas we normally associate with death. Astronomers, too, have generally assumed that a build-up of carbon monoxide in a planet’s atmosphere would be a sure sign of lifelessness. Now, a UC Riverside-led research team is arguing the opposite: celestial carbon monoxide detectors may actually alert us to a distant world teeming with simple life forms.

“With the launch of the James Webb Space Telescope two years from now, astronomers will be able to analyze the atmospheres of some rocky exoplanets,” said Edward Schwieterman, the study’s lead author and a NASA Postdoctoral Program fellow in UCR’s Department of Earth Sciences. “It would be a shame to overlook an inhabited world because we did not consider all the possibilities.”

In a study published today in The Astrophysical Journal, Schwieterman’s team used computer models of chemistry in the biosphere and to identify two intriguing scenarios in which carbon monoxide readily accumulates in the atmospheres of living planets.

Read more