Toggle light / dark theme

Here’s my latest video!


Cooking foods at temperatures higher than boiling produces advanced glycation end (AGE) products, which induce insulin resistance and inflammation, and shorten lifespan in mice. Similar data exists in humans for the effect of AGE products on insulin resistance and inflammation, and a higher dietary AGE product intake is associated with cancer in both men and women. Accordingly, reducing dietary AGE product intake may be an important strategy for improving health and increasing lifespan in people.

The achievement opens a pathway for development of the first practical and efficient devices to generate and detect light at terahertz wavelengths—between and microwaves. Such devices could be used in applications as diverse as communications in outer space, cancer detection, and scanning for concealed weapons.

The research could also enable exploration of the basic physics of matter at infinitesimally small scales and help usher in an era of quantum metamaterials, whose structures are engineered at atomic dimensions.

A team of researchers from Stowers Institute for Medical Research, Howard Hughes Medical Institute and Stanford University has discovered conserved regeneration-responsive enhancers linked to tail regeneration in fish common to two species. In their paper published the journal Science, the group describes their genetic study of two fish species and what they learned about the role of conserved regeneration-responsive enhancers in allowing the fish to regenerate tail parts.

As the researchers note, some species are able to regenerate parts of their body when they are lost. For instance, lizards can regrow lost tails, while many other animals, including most mammals, cannot regrow damaged body parts. Despite much research, scientist have not been able to explain this. In this new effort, the researchers have found what they believe to be a major clue—conserved regeneration-responsive enhancers.

Prior research has shown that DNA sequences include non-coding bits called enhancers, which, as their name implies, play a role in enhancing gene activity. In this new effort, the researchers wondered if there might be certain enhancers involved in the regeneration response in fish—in this case, African killifish and zebrafish. They noted that prior research had shown that the two species split from the same genetic branch approximately 230 million years ago—a short enough period to allow them to see changes to their DNA that allowed both to regenerate the ends of their tails if they were bitten off by predators—or cut off by researchers.

Summary: Lessons from other historic pandemics show social tension accumulated throughout epidemics lead to significant episodes of rebellion.

Source: Bocconi University

If you have not been hearing much of the French Gilets Jaunes or of the Italian Sardines in the last few months, it’s because “the social and psychological unrest arising from the epidemic tends to crowd-out the conflicts of the pre-epidemic period, but, at the same time it constitutes the fertile ground on which global protest may return more aggressively once the epidemic is over,” writes Massimo Morelli, Professor of Political Science at Bocconi, in a paper recently published in Peace Economics, Peace Science and Public Policy.

Methods: In this review, due to their promise, we focus on inorganic nanomaterials [such as hollow mesoporous silica nanoparticles (HMSNs), tungsten sulfide quantum dots (WS2QDs), and gold nanorods (AuNRs)] combining PTT with CHT, RT or IT in one treatment, aiming to provide a comprehensive understanding of PTT-based combinational cancer therapy. Results: This review found much evidence for the use of inorganic nanoparticles for PTT-based combinational cancer therapy. Conclusion: Under synergistic effects, inorganic nanomaterial-based combinational treatments exhibit enhanced therapeutic effects compared to PTT, CHT, RT, IT or PDT alone and should be further investigated in the cancer field.


Applications of inorganic nanomaterials in photothermal therapy based on combinational cancer treatment — pubmed.

Since antiquity, cultures on nearly every continent have discovered that certain plant leaves, when chewed or brewed or rubbed on the body, could relieve diverse ailments, inspire hallucinations or, in higher dosages, even cause death. Today, pharmaceutical companies import these once-rare plants from specialized farms and extract their active chemical compounds to make drugs like scopolamine for relieving motion sickness and postoperative nausea, and atropine, to curb the drooling associated with Parkinson’s disease or help maintain cardiac function when intubating COVID-19 patients and placing them on ventilators.

Now, Stanford engineers are recreating these ancient remedies in a thoroughly modern way by genetically reprogramming the cellular machinery of a special strain of yeast, effectively transforming them into microscopic factories that convert sugars and amino acids into these folkloric drugs, in much the same way that brewers’ yeast can naturally convert sugars into alcohol.

Since the start of the pandemic, scientists have learned that SARS-CoV-2, the virus that causes COVID-19, is quite cunning. When the virus enters the body, it’s capable of turning off an entire branch of the immune system, allowing it to spread for days before the immune system can sound the alarm on the intruder. However, researchers still don’t know the full scope of tissues and cell types that are most vulnerable to SARS-CoV-2. Most research has focused on identifying genes and pathways that facilitate the virus’s entry into lung cells – yet both clinical and scientific data indicate that it can cause damage in a wide range of organs. Now, new Cornell research has developed potential roadmaps for how the virus infects these other organs and identifies what molecular factors could help facilitate or restrict infection.


Research from the Feschotte Lab identifies 28 new SARS-CoV-2 and coronavirus associated receptors and factors that predict which tissues are most vulnerable to infection.