Toggle light / dark theme

What follows is my position piece for London’s FutureFest 2013, the website for which no longer exists.

Medicine is a very ancient practice. In fact, it is so ancient that it may have become obsolete. Medicine aims to restore the mind and body to their natural state relative to an individual’s stage in the life cycle. The idea has been to live as well as possible but also die well when the time came. The sense of what is ‘natural’ was tied to statistically normal ways of living in particular cultures. Past conceptions of health dictated future medical practice. In this respect, medical practitioners may have been wise but they certainly were not progressive.

However, this began to change in the mid-19th century when the great medical experimenter, Claude Bernard, began to champion the idea that medicine should be about the indefinite delaying, if not outright overcoming, of death. Bernard saw organisms as perpetual motion machines in an endless struggle to bring order to an environment that always threatens to consume them. That ‘order’ consists in sustaining the conditions needed to maintain an organism’s indefinite existence. Toward this end, Bernard enthusiastically used animals as living laboratories for testing his various hypotheses.

Historians identify Bernard’s sensibility with the advent of ‘modern medicine’, an increasingly high-tech and aspirational enterprise, dedicated to extending the full panoply of human capacities indefinitely. On this view, scientific training trumps practitioner experience, radically invasive and reconstructive procedures become the norm, and death on a physician’s watch is taken to be the ultimate failure. Humanity 2.0 takes this way of thinking to the next level, which involves the abolition of medicine itself. But what exactly would that mean – and what would replace it?

The short answer is bioengineering, the leading edge of which is ‘synthetic biology’. The molecular revolution in the life sciences, which began in earnest with the discovery of DNA’s function in 1953, came about when scientists trained in physics and chemistry entered biology. What is sometimes called ‘genomic medicine’ now promises to bring an engineer’s eye to improving the human condition without presuming any limits to what might count as optimal performance. In that case, ‘standards’ do not refer to some natural norm of health, but to features of an organism’s design that enable its parts to be ‘interoperable’ in service of its life processes.

In this brave new ‘post-medical’ world, there is always room for improvement and, in that sense, everyone may be seen as ‘underperforming’ if not outright disabled. The prospect suggests a series of questions for both the individual and society: (1) Which dimensions of the human condition are worth extending – and how far should we go? (2) Can we afford to allow everyone a free choice in the matter, given the likely skew of the risky decisions that people might take? (3) How shall these improvements be implemented? While bioengineering is popularly associated with nano-interventions inside the body, of course similarly targeted interventions can be made outside the body, or indeed many bodies, to produce ‘smart habitats’ that channel and reinforce desirable emergent traits and behaviours that may even leave long-term genetic traces.

However these questions are answered, it is clear that people will be encouraged, if not legally required, to learn more about how their minds and bodies work. At the same time, there will no longer be any pressure to place one’s fate in the hands of a physician, who instead will function as a paid consultant on a need-to-know and take-it-or-leave-it basis. People will take greater responsibility for the regular maintenance and upgrading of their minds and bodies – and society will learn to tolerate the diversity of human conditions that will result from this newfound sense of autonomy.

By - Wired

Because it’s so late on a Monday afternoon, there is a listless vibe inside the University of Washington lecture hall where Jim Olson is about to speak. The audience consists of a few dozen grad students struggling with end-of-day fatigue. They scarf down free chocolate-chunk cookies as they prepare to take notes, but sugar can sharpen mental alertness only so much. The talk they’ve come to hear, part of a biweekly series on current topics in neuroscience, doesn’t exactly seem like edge-of-your-seat material.

Olson’s first slide wakes them up. It is a pixelated photograph of an adorable 6-year-old boy named Hayden Strum, who sports a white Quiksilver T-shirt and a pirate-style eye patch. Hayden, who suffered from a pernicious brain tumor, came to Olson in 1995, back when Olson was just starting his career as a pediatric oncologist and cancer researcher. For four years, the doctor treated Hayden with successive rounds of chemotherapy and major surgeries, but nothing could save the boy’s life. Olson tells the audience that while sitting in the back row at Hayden’s memorial service, listening to the speakers express their pain, he had an epiphany about his scientific priorities.

Read more

We live in world, where technological advances continually allow new and provocative opportunities to deeply explore every aspect of our existence. Understanding the human brain remains one of our most important challenges– but with 100 billion neurons to contend with, the painstakingly slow progress can give the impression that we may never succeed. Brain mapping research unlocks secrets to our mental, social and physical wellness.

In our upcoming releases for the Galactic Public Archives, noted American PhD Neuroscientist and Futurist, Ken Hayworth outlines why he feels that mapping the brain will not be a quixotic task. Through this, he reveals his unconventional plan to ensure humanity’s place in the universe—forever.

We admit to teasing you with the below link in preparation for the main events.

Singularity University

exponential-medicine-61

In the last century, breakthroughs in modern medicine have driven big gains in quality and length of life. Antibiotics, immunization, imaging and radiology, complex surgery, minimally invasive surgery—and more. It’s a long, impressive list.

But what will the next hundred years bring?

Read more

It needs an effort dwarfing all past peace-time and war-time efforts to be launched immediately, which prospect appears almost infinitely unlikely to be met in time.

The outbreak has long surpassed the threshold of instability and can only be spatially contained any more by the formation of uninfected (A) areas as large as possible and infected areas (B) as small as still possible. Water, food, gowns and disinfectants must be provided by international teams immediately in exponentially growing numbers and for whole countries. A supportive industry must be set in motion in a planet-wide action.

Diseased_Ebola_2014

The bleak prospect that the quenching of the disease is close to a point of no return stems from chaos theory which is essentially a theory of exponential growth (of differences in the initial conditions). “Exponential growth” means that a level that has been reached – in terms of the number of infected persons in the present case – will double after a constant number of time units for a long time to come. Here, we have an empirical doubling every 3 weeks for 5 months in a row by now with no abating in sight. See the precise graphs at the end of: http://en.wikipedia.org/wiki/Ebola_virus_epidemic_in_West_Africa

Written By: — Sigularity Hub

neuro-modulation

Brain implants here we come.

DARPA just announced the ElectRX program, a $78.9 million attempt to develop miniscule electronic devices that interface directly with the nervous system in the hopes of curing a bunch of chronic conditions, ranging from the psychological (depression, PTSD) to the physical (Crohn’s, arthritis). Of course, the big goal here is to usher in a revolution in neuromodulation—that is, the science of modulating the nervous system to fix an underlying problem.

Read more

If the controversy over genetically modified organisms (GMOs) tells us something indisputable, it is this: GMO food products from corporations like Monsanto are suspected to endanger health. On the other hand, an individual’s right to genetically modify and even synthesize entire organisms as part of his dietary or medical regimen could someday be a human right.
The suspicion that agri-giant companies do harm by designing crops is legitimate, even if evidence of harmful GMOs is scant to absent. Based on their own priorities and actions, we should have no doubt that self-interested corporations disregard the rights and wellbeing of local producers and consumers. This makes agri-giants producing GMOs harmful and untrustworthy, regardless of whether individual GMO products are actually harmful.
Corporate interference in government of the sort opposed by the Occupy Movement is also connected with the GMO controversy, as the US government is accused of going to great lengths to protect “stakeholders” like Monsanto via the law. This makes the GMO controversy more of a business and political issue rather than a scientific one, as I argued in an essay published at the Institute for Ethics and Emerging Technologies (IEET). Attacks on science and scientists themselves over the GMO controversy are not justified, as the problem lies solely with a tiny handful of businessmen and corrupt politicians.
An emerging area that threatens to become as controversial as GMOs, if the American corporate stranglehold on innovation is allowed to shape its future, is synthetic biology. In his 2014 book, Life at the Speed of Light: From the Double Helix to the Dawn of Digital Life, top synthetic biologist J. Craig Venter offers powerful words supporting a future shaped by ubiquitous synthetic biology in our lives:

“I can imagine designing simple animal forms that provide novel sources of nutrients and pharmaceuticals, customizing human stem cells to regenerate a damaged, old, or sick body. There will also be new ways to enhance the human body as well, such as boosting intelligence, adapting it to new environments such as radiation levels encountered in space, rejuvenating worn-out muscles, and so on”

In his own words, Venter’s vision is no less than “a new phase of evolution” for humanity. It offers what Venter calls the “real prize”: a family of designer bacteria “tailored to deal with pollution or to absorb excess carbon dioxide or even meet future fuel needs”. Greater than this, the existing tools of synthetic biology are transhumanist in nature because they create limitless means for humans to enhance themselves to deal with harsher environments and extend their lifespans.
While there should be little public harm in the eventual ubiquity of the technologies and information required to construct synthetic life, the problems of corporate oligopoly and political lobbying are threatening synthetic biology’s future as much as they threaten other facets of human progress. The best chance for an outcome that will be maximally beneficial for the world relies on synthetic biology taking a radically different direction to GM. That alternative direction, of course, is an open source future for synthetic biology, as called for by Canadian futurist Andrew Hessel and others.
Calling himself a “catalyst for open-source synthetic biology”, Hessel is one of the growing number of experts who reject biotechnology’s excessive use of patents. Nature notes that his Pink Army Cooperative venture relies instead on “freely available software and biological parts that could be combined in innovative ways to create individualized cancer treatments — without the need for massive upfront investments or a thicket of protective patents”.
While offering some support to the necessity of patents, J. Craig Venter more importantly praises the annual International Genetically Engineered Machine (iGEM) competition in his book as a means of encouraging innovation. He specifically names the Registry of Standard Biological Parts, an open source library from which to obtain BioBricks, and describes this as instrumental for synthetic biology innovation. Likened to bricks of Lego that can be snapped together with ease by the builder, BioBricks are prepared standard pieces of genetic code, with which living cells can be newly equipped and operated as microscopic chemical factories. This has enabled students and small companies to reprogram life itself, taking part in new discoveries and innovations that would have otherwise been impossible without the direct supervision of the world’s best-trained teams of biologists.
There is a similar movement towards popular synthetic biology by the name of biohacking, promoted by such experts as Ellen Jorgensen. This compellingly matches the calls for greater autonomy for individuals and small companies in medicine and human enhancement. Unfortunately, despite their potential to greatly empower consumers and farmers, such developments have not yet found resonance with anti-GMO campaigners, whose outright rejection of biotechnology has been described as anti-science and “bio-luddite” by techno-progressives. It is for this reason that emphasizing the excellent potential of biotechnology for feeding and fuelling a world plagued by dwindling resources is important, and a focus on the ills of big business rather than imagined spectres emerging from science itself is vital.
The concerns of anti-GMO activists would be addressed better by offering support to an alternative in the form of “do-it-yourself” biotechnology, rather than rejecting sciences and industries that are already destined to be a fundamental part of humanity’s future. What needs to be made is a case for popular technology, in hope that we can reject the portrayal of all advanced technology as an ally of powerful states and corporations and instead unlock its future as a means of liberation from global exploitation and scarcity.
While there are strong arguments that current leading biotechnology companies feel more secure and perform better when they retain rigidly enforced intellectual property rights, Andrew Hessel rightly points out that the open source future is less about economic facts and figures than about culture. The truth is that there is a massive cultural transition taking place. We can see a growing hostility to patents, and an increasing popular enthusiasm for open source innovation, most promisingly among today’s internet-borne youth.
In describing a cultural transition, Hessel is acknowledging the importance of the emerging body of transnational youth whose only ideology is the claim that information wants to be free, and we find the same culture reflected in the values of organizations like WikiLeaks. Affecting every facet of science and technology, the elite of today’s youth are crying out for a more open, democratic, transparent and consumer-led future at every level.

By Harry J. Bentham - More articles by Harry J. Bentham

Originally published at h+ Magazine on 21 August 2014

Ariel Schwartz — Fast Company


BPM 31510 is just another cancer drug in human development trials, except for one thing. Scientists didn’t toil away in labs to come up with it; artificial intelligence did.

The cancer drug development process is costly and time-consuming. On average, it takes 24 to 48 months and upwards of $100 million to find a suitable candidate. Add that to the fact that 95% of all potential drugs fail in clinical trials, and the inefficiencies of the whole drug-discovery machine really become apparent.

Backed by real estate billionaire Carl Berg, eponymous biotech startup Berg wants to use artificial intelligence to design cancer drugs that are cheaper, have fewer side effects, and can be developed in half the time it normally takes. BPM 31510 is the first of Berg’s drugs to get a real-world test.

Read more

By Suzanne Jacobs — MIT Technology Review

Last week Google and Novartis announced that they’re teaming up to develop contact lenses that monitor glucose levels and automatically adjust their focus. But these could be just the start of a clever new product category. From cancer detection and drug delivery to reality augmentation and night vision, our eyes offer unique opportunities for both health monitoring and enhancement.

“Now is the time to put a little computer and a lot of miniaturized technologies in the contact lens,” says Franck Leveiller, head of research and development in the Novartis eye care division.

Read more

Written By: — Singularity Hub
white-blood-cells-cancer-blood-test 1
Absent an outright cure, it’s thought that early diagnosis of terminal diseases like cancer make treatment more effective and raise the probability of survival. But diagnosis is not always straightforward and often requires costly and invasive tests.

Simple, cheap, and accurate tests looking for the markers of disease may help.

One such method may be a blood test for cancer from University of Bradford researchers. The Lymphocyte Genome Sensitivity (LGS) test observes how DNA in lymphocytes (a type of white blood cell) is damaged under varying intensities of ultraviolet (UV) light.

Read more