Toggle light / dark theme

In a medical first, researchers harnessed the brain waves of a paralyzed man unable to speak — and turned what he intended to say into sentences on a computer screen.

It will take years of additional research but the study, reported Wednesday, marks an important step toward one day restoring more natural communication for people who can’t talk because of injury or illness.

“Most of us take for granted how easily we communicate through speech,” said Dr. Edward Chang, a neurosurgeon at the University of California, San Francisco, who led the work. “It’s exciting to think we’re at the very beginning of a new chapter, a new field” to ease the devastation of patients who lost that ability.

Today the U.S. Patent and Trademark Office officially granted Apple a patent that relates to an integrated photonics device. Apple is working with a UK Photonics company that supplies specialized components for the smartwatch market. One medical network publication believes that Apple is working with this UK company on a blood glucose solution.

Researchers have found a way to enhance radiation therapy using novel iodine nanoparticles.

Cancer cell death is triggered within three days when X-rays are shone onto tumor tissue containing iodine-carrying nanoparticles. The iodine releases electrons that break the tumor’s DNA, leading to cell death. The findings, by scientists at Kyoto University’s Institute for Integrated Cell-Material Sciences (iCeMS) and colleagues in Japan and the US, were published in the journal Scientific Reports.

“Exposing a metal to light leads to the release of electrons, a phenomenon called the photoelectric effect. An explanation of this phenomenon by Albert Einstein in 1905 heralded the birth of quantum physics,” says iCeMS molecular biologist Fuyuhiko Tamanoi, who led the study. “Our research provides evidence that suggests it is possible to reproduce this effect inside cancer cells.”

The U.S. military says it is months away from launching clinical trials of a pill designed to block or reduce many degenerative effects of aging—an oral treatment that a leading researcher in the field says is better than nothing while questioning how effective it will ultimately prove.

U.S. Special Operations Command (SOCOM)—which develops and employs Special Operations Forces worldwide to advance U.S. policies and objectives—has “completed preclinical safety and dosing studies in anticipation of follow-on performance testing” of a first-in-class nicotinamide adenine dinucleotide, oxidized state (NAD+) enhancer, a small molecule drug being developed by Metro International Biotech (MetroBiotech), Navy Cmdr. Timothy A. Hawkins, a spokesperson for SOCOM, told GEN.

SOCOM and MetroBiotech are set to start clinical trials during the 2022 federal fiscal year, which starts October 1.

The team plans to keep studying whether vaccines could help alleviate IBD symptoms, which tend to stay dormant then flare up. They also hope to find similar ways to nudge a dysfunctional gut microbiome back into balance.


The connection between gut bacteria and our overall health has been well studied in recent years. And while many of the specifics of this relationship are still unknown, it’s clear that a balanced microbiome with the right mix of bacteria helps maintain many of our regular bodily functions; conversely, the wrong mix of bacteria might help cause or signal the emergence of illness. But bacteria are only one type of microbe, and there’s been less work studying the many viruses and fungi that inhabit our body.

This new research was conducted by scientists from the University of Utah Health, who were curious if fungi were relevant to the development of inflammatory bowel disease (IBD), which includes Crohn’s. IBD is a complicated disorder, thought to have several contributing factors, including genetics. But recent research has suggested that certain species of fungi and yeast (the single celled version of fungi) could be one of these risk factors, including a common fungi in our gut called Candida albicans.

In experiments with mice, the team noticed that a functioning immune system seemed to interact with C. albicans. The yeast has the uncanny ability to switch between different forms of growth. It can remain a ball-like single-celled organism, or it can turn into a multicellular form, decked out with hyphae, a common branch-like structure found in most other fungi, that allows it to invade the tissues of our body to keep growing. The team found evidence that antibodies specific to C. albicans didn’t outright try to kill it—instead, they kept the yeast from turning into this more invasive form. But once the yeast was allowed to grow unfettered, the mice became sick with IBD-like symptoms, which can include diarrhea, intense cramps, and weight loss.

“The trend for feeding dogs raw food may be fuelling the spread of antibiotic resistant-bacteria”, the researchers said in a press release for their study, to be presented at the European Congress of Clinical Microbiology & Infectious Diseases.

Separate research to be presented at the same conference found resistance to a last-resort antibiotic may be passing between pet dogs and their owners.


Antibiotic-resistant “superbugs” — which the World Health Organization calls one of the top global threats to public health — usually conjure images of hospital settings.

Emotion regulation is an essential aspect of mental health and wellbeing. In fact, past studies have found associations between poor emotion regulation and several psychiatric disorders, including bipolar disorder, borderline personality disorder and complex post-traumatic stress disorder (PTSD).

During their everyday life, humans can regulate their negative emotions in different ways, most of which do not require any conscious cognitive engagement. For instance, they might take a bath, step outside for fresh air or listen to .

Researchers at Radboud University Nijmegen in The Netherlands, the Norwegian University of Science and Technology (NTNU), and University Hospital Aachen, Germany have recently carried out a study aimed at investigating the effects of a short-term on implicit emotion regulation. Their paper, published in BMC Neuroscience, specifically examined whether musical training helped people to reduce the negative emotions elicited by unpleasant or disgusting odors.

Immortality DNA strands found in humans.


Distributed stem cells (DSCs), which continuously divide asymmetrically to replenish mature tissue cells, adopt a special form of mitotic chromosome segregation. Chromosome segregation is nonrandom instead of random. DSCs cosegregate the set of sister chromosomes with the older of the two template DNA strands used for semiconservative DNA replication during the preceding S phase. Neither the responsible molecular mechanisms nor the cellular function of nonrandom segregation are known. Here, we report evidence that immortal strand chromosomes have a higher level of cytosine 5-hydroxymethylation than mortal chromosomes, which contain the younger DNA template strands. We propose that asymmetric chromosomal 5-hydroxymethylation is a key element of a cellular mechanism by which DSCs distinguish older DNA template strands from younger ones.

Immortal strands are the targeted chromosomal DNA strands of nonrandom sister chromatid segregation, a mitotic chromosome segregation pattern unique to asymmetrically self-renewing distributed stem cells (DSCs). By nonrandom segregation, immortal DNA strands become the oldest DNA strands in asymmetrically self-renewing DSCs. Nonrandom segregation of immortal DNA strands may limit DSC mutagenesis, preserve DSC fate, and contribute to DSC aging. The mechanisms responsible for specification and maintenance of immortal DNA strands are unknown. To discover clues to these mechanisms, we investigated the 5-methylcytosine and 5-hydroxymethylcytosine (5hmC) content on chromosomes in mouse hair follicle DSCs during nonrandom segregation. Although 5-methylcytosine content did not differ significantly, the relative content of 5hmC was significantly higher in chromosomes containing immortal DNA strands than in opposed mitotic chromosomes containing younger mortal DNA strands.