Summary: Researchers have discovered a link between nerve clusters in the brain and the amount of force generated by a physical action.
Source: Oxford University.
Researchers have found a link between the activity in nerve clusters in the brain and the amount of force generated in a physical action, opening the way for the development of better devices to assist paralysed patients.
What generates voltage when you warm it up, push on it, or blow on it?
Get your mind out of the gutter. The correct answer is polyvinylidene fluoride, a material NASA researchers have refined for use in morphing aircraft that shapeshift in response to their environment. But wait! There’s more: It can also kickstart the human body’s healing process.
Because of its potential to heal the world and make it a better place, the polymer’s inventors, Mia Siochi and Lisa Scott Carnell, have now turned it over to the public through NASA’s Technology Transfer Program. Through that process, companies license NASA technology for cheap and turn it into products to sell to non-astronauts. But transforming space stuff into Earth stuff isn’t always smooth. Turned-over technology can get lost inside the catalog, stall out in the bowels of a company, or become part of a product the original inventors wouldn’t approve of.
Bioprinting has been all over the news in the past several years with headline-worthy breakthroughs like printed human skin, synthetic bones, and even a fully functional mouse thyroid gland.
3D printing paved the way for bioprinting thanks to the printers’ unique ability to recreate human tissue structures; their software can be written to ‘stack’ cells in precise patterns as directed by a digital model, and they can produce tissue in just hours and make numerous identical samples.
Despite the progress in bioprinting, however, more complex human organs continue to elude scientists, and resting near the top of the ‘more complex’ list are the kidneys.
Researchers at The University of Manchester have discovered that a potential new drug reduces the number of brain cells destroyed by stroke and then helps to repair the damage.
A reduction in blood flow to the brain caused by stroke is a major cause of death and disability, and there are few effective treatments.
A team of scientists at The University of Manchester has now found that a potential new stroke drug not only works in rodents by limiting the death of existing brain cells but also by promoting the birth of new neurones (so-called neurogenesis).
The birth of the first baby born using a technique called mitochondrial replacement, which uses DNA from three people to “correct” an inherited genetic mutation, was announced on Sept. 27.
Mitochondrial replacement or donation allows women who carry mitochondrial diseases to avoid passing them on to their child. These diseases can range from mild to life-threatening. No therapies exist and only a few drugs are available to treat them.
There are no international rules regulating this technique. Just one country, the United Kingdom, explicitly regulates the procedure. It’s a similar situation with other assisted reproductive techniques. Some countries permit these techniques and others don’t.
Scientists have developed a new type of artificial muscle fibre based on nylon, which could one day render our future robot companions more realistic than ever.
Unlike previous synthetic muscles, this technology is cheap and simple to produce, which makes it a better option if we want our droids to be able to flex, move, and repair themselves in much the same way as flesh-and-blood people.
Robot muscles based around nylon have been tried before, but researchers at MIT have developed a new technique to shape and heat the fibres, giving the artifical muscles greater scope to bend and contract.
New technology driving down the cost of research and therapies!
New technology arriving that will help drive down the costs of gene therapies.
“The researchers were able to use a closed, semi-automated benchtop system to produce genetically-modified HSCs in just one night and hope that such systems will increase the availability and affordability of cell therapies”.