Toggle light / dark theme

We develop a quantum information protocol that models the biological behaviours of individuals living in a natural selection scenario. The artificially engineered evolution of the quantum living units shows the fundamental features of life in a common environment, such as self-replication, mutation, interaction of individuals, and death. We propose how to mimic these bio-inspired features in a quantum-mechanical formalism, which allows for an experimental implementation achievable with current quantum platforms. This study paves the way for the realization of artificial life and embodied evolution with quantum technologies.

Read more

Becoming immortal is one of mankind’s many quixotic notions that most people will relegate to the world of fantasy and science fiction. However, there is a subset of prominent scientists who believe that immortality is not only attainable, but it is something that will come to fruition in as little as 25 years. This idea is shared by men like Google’s Director of Engineering, Ray Kurzweil; Tesla Motors CEO, Elon Musk; and one of the most interesting presidential candidates outside of Donald Trump and Deez Nuts, Zoltan Istvan. All three men identify as trans-humanist, and for those who don’t know, trans-humanism is the idea that mankind will one day be able to transcend our biological limitations through the use of science and technology; not to mention, the movement has accumulated over 3 million supporters worldwide. So the question remains, with the multitude of prominent intellectuals who believe immortality is a tangible goal, just how will they go about achieving it? Well, the six answers below could possibly hold the key to everlasting life.

Number Six: Uploading Minds to Computers. Futurists believe that at some point in the near future we will be able to copy and scan all of the data that exists in our brains and upload the information into a computer. This will allow us to perpetually exist as incorporeal inhabitants of cyberspace. Of course, the idea of mind uploading is still purely science fiction, but if it ever becomes tangible, progeny could possibly live in a limitless world, that echoes notions expressed in the Matrix; minus the robot despots.

Read more

I gave an interview for a queer people of interest blog and plugged the lifeboat foundation. Thought I would share the information here.


Phillipe Bojorquez is an engineer, activist, and artist: He has been described as “a futurist with a community minded bent.” He is a engineer, with experience at First Dibs, Samsung, Boxee, and Canary. He is a board member of The Lifeboat Foundation, an independent research group dedicated to helping humanity survive the risks posed by new technologies. His research areas include artificial intelligence, robotics, engineering, and philosophy. Bojorquez is a past board member of CRUX, NYC’s LGBT rock climbing organization, and an early contributor and organizer of Vegans in Vegas, a yearly gathering of activists and entrepreneurs at the forefront of nutrition and sustainability.

Read more

With the recent use of genetically engineered mosquitoes in Brazil to halt the spread of the Zika virus, we might be beginning to see some major health improvements as a consequence of the genetics revolution. A world in which mosquitoes were all but eliminated from the ecosystem would look quite different from the world of today, especially for people living in the tropics where the threat of mosquito transmitted infections does more than just mar an otherwise tranquil margarita sipped from the veranda of a beach resort. This is not to beggar the more mundane advantages of a mosquito-free habitat, but rather call attention to the fact that for large parts of the world, including Brazil, mosquitoes can be the difference between life and death.

Ironically, the genetic changes made to the Aedes aegypti mosquito in order to halt the spread of the Zika virus are deceptively simple. The company behind the project, Oxitec, used a modified version of something called the “Sterile Insect Technique” to create their hybrid specimens. The end goal of this process is to produce a male mosquito possessing a “self-limiting gene.” When these males mate with wild female mosquitoes, they create non viable offspring that perish soon after the birth. The end result is a rapid drop in the mosquito population of a given area.

When compared with some of the more hazardous forms of mosquito control currently in use such as massive spraying of DEET and chemical infusers popular throughout Asia, sterilizing mosquitoes sounds like an imminently reasonable approach. As a journalist who once saw his roadside samosa blasted by a massive spray of DEET from an oncoming municipal vehicle in India, I can personally attest to a preference for a genetic solution.

Read more

In a computational reconstruction of brain tissue in the hippocampus, Salk and UT-Austin scientists found the unusual occurrence of two synapses from the axon of one neuron (translucent black strip) forming onto two spines on the same dendrite of a second neuron (yellow). Separate terminals from one neuron’s axon are shown in synaptic contact with two spines (arrows) on the same dendrite of a second neuron in the hippocampus. The spine head volumes, synaptic contact areas (red), neck diameters (gray) and number of presynaptic vesicles (white spheres) of these two synapses are almost identical. (credit: Salk Institute)

Salk researchers and collaborators have achieved critical insight into the size of neural connections, putting the memory capacity of the brain far higher than common estimates. The new work also answers a longstanding question as to how the brain is so energy efficient, and could help engineers build computers that are incredibly powerful but also conserve energy.

“This is a real bombshell in the field of neuroscience,” says Terry Sejnowski, Salk professor and co-senior author of the paper, which was published in eLife. “We discovered the key to unlocking the design principle for how hippocampal neurons function with low energy but high computation power. Our new measurements of the brain’s memory capacity increase conservative estimates by a factor of 10 to at least a petabyte (1 quadrillion or 1015 bytes), in the same ballpark as the World Wide Web.”

Read more

In the early days of the space race of the 1960s, NASA used satellites to map the geography of the moon. A better understanding of its geology, however, came when men actually walked on the moon, culminating with Astronaut and Geologist Harrison Schmitt exploring the moon’s surface during the Apollo 17 mission in 1972.

Image credit: Scientific American
Image credit: Scientific American

In the modern era, Dr. Gregory Hickock is one neuroscientist who believes the field of neuroscience is pursuing comparable advances. While scientists have historically developed a geographic map of the brain’s functional systems, Hickock says computational neuroanatomy is digging deeper into the geology of the brain to help provide an understanding of how the different regions interact computationally to give rise to complex behaviors.

“Computational neuroanatomy is kind of working towards that level of description from the brain map perspective. The typical function maps you see in textbooks are cartoon-like. We’re trying to take those mountain areas and, instead of relating them to labels for functions like language, we’re trying to map them on — and relate them to — stuff that the computational neuroscientists are doing.”

Hickok pointed to a number of advances that have already been made through computational neuroanatomy: mapping visual systems to determine how the visual cortex can code information and perform computations, as well as mapping neurally realistic approximations of circuits that actually mimic motor control, among others. In addition, researchers are building spiking network models, which simulate individual neurons. Scientists use thousands of these neurons in simulations to operate robots in a manner comparable to how the brain might perform the job.

That research is driving more innovation in artificial intelligence, says Gregory. For example, brain-inspired models are being used to develop better AI systems for stores of information or retrieval of information, as well as in automated speech recognition systems. In addition, this sort of work can be used to develop better cochlear implants or other sorts of neural-prostheses, which are just starting to be explored.

“In terms of neural-prostheses that can take advantage of this stuff, if you look at patterns and activity in neurons or regions in cortex, you can decode information from those patterns of activity, (such as) motor plans or acoustic representation,” Hickok said. “So it’s possible now to implant an electrode array in the motor cortex of an individual who is locked in, so to speak, and they can control a robotic arm.”

More specifically, Hickok is interested in applying computational neuroanatomy to speech and language functions. In some cases where patients have lost the ability to produce fluid speech, he states that the cause is the disconnection of still-intact brain areas that are no longer “talking to each other”. Once we understand how these circuits are organized and what they’re doing computationally, Gregory believes we might one day be able to insert electrode arrays and reconnect those brain areas as a form of rehabilitation.

As he looks at the future applications in artificial intelligence, Hickok says he expects continued development in neural-prostheses, such as cochlear implants, artificial retinas, and artificial motor control circuits. The fact that scientists are still trying to simulate how the brain does its computations is one hurdle; the “squishy” nature of brain matter seems to operate differently than the precision developed in digital computers.

Though multiple global brain projects are underway and progress is being made (Wired’s Katie Palmer gives a succinct overview), Gregory emphasizes that we’re still nowhere close to actually re-creating the human mind. “Presumably, this is what evolution has done over millions of years to configure systems that allow us to do lots of different things and that is going to (sic) take a really long time to figure out,” he said. “The number of neurons involved, 80 billion in the current estimate, trillions of connections, lots and lots of moving parts, different strategies for coding different kinds of computations… it’s just ridiculously complex and I don’t see that as something that’s easily going to give up its secrets within the next couple of generations.”

At one time or another, we’ve all been encouraged to “maximize our potential.” In a recent interview, Academic and Entrepreneur Juan Enriquez said that mankind is making progress toward expanding beyond its potential. And the changes, he believes, could be profound.

To illustrate the process, Enriquez theorized what might happen if we were to bring Charles Darwin back to life and drop him in the middle of Trafalgar Square. As Darwin takes out his notebook and starts observing, Enriquez suggested he would likely see what might appear to be a different species. Since Darwin’s time, humans have grown taller, and with 1.5 billion obese people, larger. Darwin might also notice some other features too that many of us take for granted — there are more senior citizens, more people with all their teeth, a lot fewer wrinkles, and even some 70-year-olds running in marathons.

“There’s a whole series of morphologies that are just different about our bodies, but we don’t notice it. We don’t notice we’ve doubled the lifespan of humans in the last century,” Enriquez said. “We don’t notice how many more informations (sic) come into a brain in a single day versus what used to come in in a lifetime. So, across almost every part of humanity, there have been huge changes.”

Part of the difference that Darwin would see, Enriquez noted, is that natural selection no longer applies as strongly to life and death as it once did. Further, random gene mutations that led to some advantages kept getting passed down to generations and became part of the species. The largest difference, however, is our ongoing move toward intelligent design, he said.

“We’re getting to the stage where we want to tinker with humans. We want to insert this gene so this person doesn’t get a deadly disease. We want to insert this gene so that maybe the person performs better on an 8,000 meter peak climb, or in sports, or in beauty, or in different characteristics,” Enriquez said. “Those are questions we never used to have to face before because there was one way of having sex and now there’s at least 17.”

According to Enriquez, the concept of evolving ourselves is an important one because we are the first and only species on earth that has deliberately taken control over the pattern of evolution of what lives and dies (Science Magazine seems to agree). The technologies we’re developing now towards this goal provide us with an instrument for the a potential longer survival of the species than might otherwise be possible.

Those notions, however, raise a number of moral and ethical questions. “What is humanity…where do we want to take it?” Enriquez poses. While he noted that it’s easy to project that tinkering with humanity will lead to a dystopic future, he remains cautiously optimistic about our potential.

“I think we’ve become a much more domesticated species. We’re far less likely to murder each other than we were 50 years ago, 100 years ago or 200 years ago. We have learned how to live together in absolutely massive cities,” Enriquez said. “I think we have become far more tolerant of other religions (and) other races. There are places where this hasn’t happened but, on the whole, life has gotten a whole lot better in the last two or three hundred years and as you’re looking at that, I think we will have the tolerance for different choices made with these very instruments, and I think that’s a good thing.”

As he looks at the future of evolving humanity, Enriquez sees reasons for a great deal of optimism in the realm of single gene modification, especially in the area of eradicating disease and inherited conditions. The consequences, however, are still an unknown.

“In the UK, there was a question, ‘Do we insert gene code into a fertilized egg to cure a deadly disease?’ That is a real question, because that would keep these babies from dying early from these horrendous diseases,” Enriquez said. “The consequences of that are, for the first time, probably in the next year, you’ll have the first child born to three genetic parents.”

The path toward evolving human intelligence in the near future isn’t as cut and dry, Enriquez said. Once we establish the implications and morality between governments, religious organizations, and the scientific community, there are still plenty of hurdles to clear.

“There have been massive studies in China and we haven’t yet identified genes correlated to intelligence, even though we believe intelligence has significant inherited capacity,” Enriquez said. “I think you have to separate reality from fiction. The ability to insert a gene or two, and really modify the intelligence of human beings, I think, is highly unlikely in the next decade or two decades.”

This came up recently and it occurred I never posted this here. This is a lecture by Robert Bradbury, not not Ray Bradbury. I had the pleasure of exchanging a few emails with him. Unfortunately those emails are lost so I cannot share them. He was an advocate of life extension and he was a big thinker. I’ll post both vids and a link to the M-brain page. He is not with us anymore I regret to say. Ready?


Renown aging expert Robert Bradbury discusses whole genome engineering, evolution and aging and ways to defeat aging. His talk touches on many areas including nanotechnology, biology, and computer science. More information can be found at http://manhattanbeachproject.com Follow updates at http://twitter.com/maxlifeorg

Read more