Toggle light / dark theme

Thanks to the cocktail of drugs that make up antiretroviral therapy, HIV is no longer a death sentence. But there are downsides to antiretroviral therapy—taking the treatment for many years is expensive, increases drug resistance, and could cause adverse reactions in a patient. And, because the virus stays in reservoirs in the body, the disease can continue to progress in patients if they stop taking their medication.

Now a team of German researchers has found an enzyme that can “cut” the viral DNA out of a cell’s genetic code, which could eradicate the virus from a patient’s body altogether. The proof-of-concept study, published this week in Nature Biotechnology and reported by Ars Technica, was done in mice, but the researchers believe that their conclusions show that this DNA-snipping enzyme could be used in clinical practice. And if it can cut HIV’s genetic code out of a patient’s body, the technique could be a cure for the disease.

The researchers created the DNA-snipping enzyme called Brec1 using directed evolution, an engineering technique that mimics proteins’ natural evolution process. They programmed the enzyme to cut DNA on either side of a sequence characteristic of HIV—a difficult task since the DNA of organisms and of the virus itself mutates often. Still, the researchers identified a well-conserved sequence, then they tested how reliably the enzyme could snip out that sequence in cells taken from HIV-positive patients, in bacteria, and in mice infected with the human form of HIV. After a number of tweaks, Brec1 would cut only that sequence of DNA, patching up the cell’s genetic code once the HIV sequence was cleaved out. After 21 weeks, the cells treated with Brec1 showed no signs of HIV.

Read more

The most recent Liz talk. According to her in this vid her first test results of telomere length are next month.


Liz Parrish, the Founder and CEO of BioViva Sciences USA Inc, is best known for recently becoming the first person to be treated with gene therapy to reverse aging.

BioViva is committed to extending healthy lifespans using gene therapy. Liz is known as “the woman who wants to genetically engineer you.” She is a humanitarian, entrepreneur and innovator and a leading voice for genetic cures.

This talk, “Gene therapy to save the world”, was co-hosted by Oxford Transhumanism and Emerging Technologies (OxTET) and Oxford University Scientific Society. It was held at IEB building, Department of Engineering Science, Oxford, on Feb 23rd 2016.

For more details about the event, see https://www.facebook.com/events/1682079625367629/.

Help us caption & translate this video!

http://amara.org/v/HvM7/

Read more

The substance that provides energy to all the cells in our bodies, Adenosine triphosphate (ATP), may also be able to power the next generation of supercomputers. The discovery opens doors to the creation of biological supercomputers that are about the size of a book. That is what an international team of researchers led by Prof. Nicolau, the Chair of the Department of Bioengineering at McGill, believe. They’ve published an article on the subject earlier this week in the Proceedings of the National Academy of Sciences (PNAS), in which they describe a model of a biological computer that they have created that is able to process information very quickly and accurately using parallel networks in the same way that massive electronic super computers do.

Except that the model bio supercomputer they have created is a whole lot smaller than current supercomputers, uses much less energy, and uses proteins present in all living cells to function.

Doodling on the back of an envelope

“We’ve managed to create a very complex network in a very small area,” says Dan Nicolau, Sr. with a laugh. He began working on the idea with his son, Dan Jr., more than a decade ago and was then joined by colleagues from Germany, Sweden and The Netherlands, some 7 years ago. “This started as a back of an envelope idea, after too much rum I think, with drawings of what looked like small worms exploring mazes.”

Read more

Scientists see cislunar outpost as critical to advancing future Mars missions.

NASA researchers based in Colorado are devising efforts to build a human outpost in cislunar space — the region around the moon. Unfortunately for fans of space tourism, these outposts are not designed to be the Airbnb of tomorrow. Rather, the habitats are to be used as in-between points to facilitate travel to near-Earth asteroids or Mars.

Scientists and engineers at NASA’s Next Space Technologies for Exploration Partnerships (NextSTEP) Projects are researching life-support needs, updating astronaut radiation protection, and rethinking communication systems, to enhance the habitability of orbital communities parked in cislunar space.

Read more

Breaking the bacteria barriers.


If that field is at just the right magnitude, it will open up pores within the cell membrane, through which DNA can flow. But it can take scientists months or even years to figure out the exact electric field conditions to reversibly unlock a membrane’s pores.

A new microfluidic device developed by MIT engineers may help scientists quickly home in on the electric field “sweet spot” — the range of electric potentials that will harmlessly and temporarily open up membrane pores to let DNA in. In principle, the simple device could be used on any microorganism or cell, significantly speeding up the first step in genetic engineering.

“We’re trying to reduce the amount of experimentation that’s needed,” said Cullen Buie, the Esther and Harold E. Edgerton Associate Professor of mechanical engineering at MIT. “Our big vision for this device and future iterations is to be able to take a process that usually takes months or years, and do it in a day or two.”

Read more

By Warren Duffie, Office of Naval Research

An exciting new scientific frontier-synthetic biology-took center stage as a celebrated scientist from the Massachusetts Institute of Technology (MIT) recently spoke at the headquarters of the Office of Naval Research (ONR).

As part of a Distinguished Lecture Series celebrating ONR’s 70th anniversary, world-class scientists, researchers and experts from diverse fields will be speaking at ONR in 2016. Dr. Christopher Voigt, an MIT professor of biological engineering, inaugurated the lecture series with a look at the revolutionary potential of synthetic biology.

Read more

I believe that AI holds a lot of promise and many great things; however, we have to correct some very critical issues 1st before compound a huge issue that we have today. And, that is Cyber Security and re-establish trust with our consumers and customers. Without these 2 being fully addressed; you will compound these two challenges with AI plus run the risk of having an IoT that most people will not wish to use due to hackers, bad data, etc. Not to mention lawsuits for Wi-Fi connected robotics that were hacked and injured or worse some innocent person.

I believe need to ensure priorities are in order before we make things worse.


Unexpected convergent consequences…this is what happens when eight different exponential technologies all explode onto the scene at once.

This post (the second of seven) is a look at artificial intelligence. Future posts will look at other tech areas.

An expert might be reasonably good at predicting the growth of a single exponential technology (e.g., the Internet of Things), but try to predict the future when A.I., robotics, VR, synthetic biology and computation are all doubling, morphing and recombining. You have a very exciting (read: unpredictable) future. This year at my Abundance 360 Summit I decided to explore this concept in sessions I called “Convergence Catalyzers.”

Read more

I find this a bit of a stretch. Maybe some jobs; however, not all and there will be (like any new technology, etc.) new career fields created.


“Can the global economy adapt to greater than 50 per cent unemployment? Will those out of work be content to live a life of leisure?” Vardi noted.

“I believe that society needs to confront this question before it is upon us: If machines are capable of doing almost any work humans can do, what will humans do?” he said.

“The question I want to put forward is, ‘Does the technology we are developing ultimately benefit mankind?’” said Vardi, a member of both the US National Academy of Engineering and the National Academy of Science.

Read more

The pace at which robots and intelligent machines are able to take over the jobs traditionally performed by humans will result in more than half the population being unemployed within 30 years, an expert in computing has predicted.

While some may look forward to a life of leisure, many others face the dismal prospect of long-term unemployment as a result of the rise of smart machines, from self-driving cars and intelligent drones to smart financial-trading machines, said Moshe Vardi, professor of computational engineering at Rice University in Houston, Texas.

Read more