Toggle light / dark theme

There might be billions, even trillions, of rogue planets in the Milky Way. Could they support life? How can we find out?


The search for potentially habitable planets is focused on exoplanets—planets orbiting other stars—for good reason. The only planet we know of with life is Earth and sunlight fuels life here. But some estimates say there are many more rogue planets roaming through space, not bound to or warmed by any star.

Could some of them support life?

The term ‘Rogue Planet’ is a colourful term used to describe what are actually interstellar objects (ISOs). But in the case of rogue planets, the ISOs are planetary-mass objects, rather than less massive objects like ‘Oumuamua or 2I/Borisov, the only two confirmed ISOs to enter our Solar System.

Back to Aliens, we find “Building Better Worlds” as the main slogan of the nefarious Weyland-Yutani Corporation. Apparently, terraforming (and presumably mining) celestial bodies is a large part of their galactic business. When acid hits the fan and the xenomorphs take over Hadley’s Hope, their operations on LV-426 have been active for decades. But is that enough time for Acheron (formally labelled as LV-426) to develop a breathable atmosphere?

The film itself doesn’t have many answers when it comes to terraforming, but the procedure appears to revolve around reutilizing the existing atmosphere – breaking down pre-existing elements, transforming, and redistributing them – instead of starting from scratch, which would indeed take centuries. Basically, mankind can’t turn any planet or planetoid into an Earth-like environment in the Alien universe; most components need to be present already, same goes for the atmospheric conditions. This fixes the centuries-long problem that comes up in other works of fiction, or at least makes the storytelling more realistic.

Complementary material detailing the Alien universe’s history and technology claim the first “Automated Atmosphere Processor” became a reality in 2,029 with a first terraforming process happening on Gliese 667 Cc during the 2030s and ending around 2040. The Weyland Corp Terraforming Division was created in 2,072 effectively starting a new age of space exploration. As stated before, native atmospheres are transformed thanks to the company’s “Atmosphere Processing Plants” and other techniques, such as algae bloom tanks that consume excess carbon dioxide and generate oxygen. It all depends on the properties of planets which have been previously scouted, inspected, and approved for viable terraformation.

Mars is the solar system’s near-miss world. Earth may have gotten everything right when it came to sustaining life—atmosphere, water, proximity to the sun. Mercury, Venus and the outer planets, with their extreme temperatures and inhospitable chemistry, may have gotten everything wrong. Mars, on the other hand, came so close, yet fell short.

Thanks to data from rovers and other spacecraft, we know that the Red Planet once fairly sloshed with water—with dry deltas, riverbeds, and sea basins stamped into its surface. But 4 billion years ago, the Martian core cooled, shutting down the dynamo that sustained its magnetic field. That left the planet vulnerable to the solar wind, which clawed away the atmosphere, and allowed the Martian water to sputter into space. Before long—in geological terms—the planet was a desert.

At least that’s long been the thinking. But a new paper published Sept. 20 in the Proceedings of the National Academy of Sciences suggests otherwise. According to the new research, Mars was doomed from the start. Its small size—about half the diameter of Earth and less than one-ninth the mass—simply never produced the gravitational muscle to allow the planet to hold onto either its air or its water. With or without a magnetic field, Mars was destined to die.

The only place in the Universe where we know life exists is on Earth. However, with billions of other star systems in the universe, it may not be the best place for life. In a new study, astronomers modeled the potential for life on other watery planets and discovered some conditions that can create oceans that are optimal for habitability.

The model suggests that watery planets with dense atmospheres, continents, and long days — planets that rotate slowly — were the most suitable for life. These conditions increase ocean circulation, which brings nutrients from the depths to the surface, where they can be used by organisms.

“[The research] shows us that conditions on some exoplanets with favorable ocean circulation patterns could be better suited to support life that is more abundant or more active than life on Earth,” Stephanie Olson, a University of Chicago researcher who lead the new study, said in a press release.

Analysis of unique fingerprints in light emitted from material surrounding young stars has revealed “significant reservoirs” of large organic molecules necessary to form the basis of life, say researchers.

Dr. John Ilee, Research Fellow at the University of Leeds who led the study, says the findings suggest that the basic chemical conditions that resulted in life on Earth could exist more widely across the Galaxy.

The large organic molecules were identified in protoplanetary disks circling newly formed stars. A similar disk would have once surrounded the young Sun, forming the planets that now make up our Solar System. The presence of the molecules is significant because they are “stepping-stones” between simpler carbon-based molecules such as carbon monoxide, found in abundance in space, and more complex molecules that are required to create and sustain life.

Forget about online games that promise you a “whole world” to explore. An international team of researchers has generated an entire virtual universe, and made it freely available on the cloud to everyone.

Uchuu (meaning “outer space” in Japanese) is the largest and most realistic simulation of the to date. The Uchuu simulation consists of 2.1 trillion particles in a computational cube an unprecedented 9.63 billion light-years to a side. For comparison, that’s about three-quarters the distance between Earth and the most distant observed . Uchuu reveals the evolution of the universe on a level of both size and detail inconceivable until now.

Uchuu focuses on the large-scale structure of the universe: mysterious halos of dark matter that control not only the formation of galaxies, but also the fate of the entire universe itself. The scale of these structures ranges from the largest galaxy clusters down to the smallest galaxies. Individual stars and planets aren’t resolved, so don’t expect to find any alien civilizations in Uchuu. But one way that Uchuu wins big in comparison to other virtual worlds is the ; Uchuu simulates the evolution of matter over almost the entire 13.8 billion year history of the universe from the Big Bang to the present. That is over 30 times longer than the since animal life first crawled out of the seas on Earth.