The many-worlds interpretation of quantum mechanics predicts the formation of distinct parallel worlds as a result of a quantum mechanical measurement. Communication among these parallel worlds would experimentally rule out alternatives to this interpretation. A procedure for “interworld’’ exchange of information and energy, using only state of the art quantum optical equipment, is described. A single ion is isolated from its environment in an ion trap. Then a quantum mechanical measurement with two discrete outcomes is performed on another system, resulting in the formation of two parallel worlds. Depending on the outcome of this measurement the ion is excited from only one of the parallel worlds before the ion decoheres through its interaction with the environment. A detection of this excitation in the other parallel world is direct evidence for the many-worlds interpretation.
Proposal for an experimental test of the many-worlds interpretation of quantum mechanics
Posted in energy, quantum physics