Circa 2017
Recently, increasing attention has been devoted to mastering a new technique of optical delivery of micro-objects tractor-beam’1, 2, 3, 4, 5, 6, 7, 8, 9. Such beams have uniform intensity profiles along their propagation direction and can exert a negative force that, in contrast to the familiar pushing force associated with radiation pressure, pulls the scatterer toward the light source. It was experimentally observed that under certain circumstances, the pulling force can be significantly enhanced6 if a non-spherical scatterer, for example, a linear chain of optically bound objects10, 11, 12, is optically transported. Here we demonstrate that motion of two optically bound objects in a tractor beam strongly depends on theirs mutual distance and spatial orientation. Such configuration-dependent optical forces add extra flexibility to our ability to control matter with light.