Toggle light / dark theme

Perfect vision is great. But like any advantage it comes with limitations. Those with ease don’t develop the same unique senses and strengths as someone who must overcome obstacles, people like Lana Awad, a neurotech engineer at CTRL-labs in New York, who diagnosed her own degenerative eye disease with a high school science textbook as a teen in Syria and went on to teach at Harvard University.

Though they see themselves as clear leaders, visionaries with all the obvious advantages—like Elon Musk and Mark Zuckerberg, for example—can be blind in their way, lacking the context needed to guide if they don’t recognize their counterintuitive limitations. This is problematic for humanity because we’re all relying on them to create the tools that increasingly rule every aspect of our lives. The internet is just the start.

Tools that will meld mind and machine are already a reality. Neurotech is a huge business with applications being developed for gaming, the military, medicine, social media, and much more to come. Neurotech Report projected in 2016 that the $7.6 billion market could reach $12 billion by 2020. Wired magazine called 2017, “a coming-out year for the brain machine interface (BMI).”

Read more

Speaking at London’s British Library, Dorsey said; ‘The world ultimately will have a single currency, the internet will have a single currency.

‘And I believe that it will be bBtcoin’, he said.

The Twitter founder’s talk was centred around Dorsey’s new payments firm, Square, which allows merchants to take payments via smartphones and tablets.

Read more

UCLA scientists have developed a new method that utilizes microscopic splinter-like structures called “nanospears” for the targeted delivery of biomolecules such as genes straight to patient cells. These magnetically guided nanostructures could enable gene therapies that are safer, faster and more cost-effective.

The research was published in the journal ACS Nano by senior author Paul Weiss, UC Presidential Chair and distinguished professor of chemistry and biochemistry, materials science and engineering, and member of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA.

Gene therapy, the process of adding or replacing missing or defective genes in patient cells, has shown great promise as a treatment for a host of diseases, including hemophilia, muscular dystrophy, immune deficiencies and certain types of cancer.

Read more

When the first laser was invented the idea of using it as a superweapon seemed like science fiction. Almost 60 years later and it still seems that way, despite a remarkable degree of progress. Prototypes have been used to destroy small watercraft, shoot down missiles and drones, and have even been deployed at least once in a war zone, but the revolutionary destructive ray that would change the face of battle as fundamentally as the longbow or the airplane has yet to appear. So just what is the current state of laser weapons technology, and what does it hold in store for the future of warfare?

Read more

Since their invention, computers have become faster and faster, as a result of our ability to increase the number of transistors on a processor chip.

Today, your smartphone is millions of times faster than the computers NASA used to put the first man on the moon in 1969. It even outperforms the most famous supercomputers from the 1990s. However, we are approaching the limits of this electronic technology, and now we see an interesting development: light and lasers are taking over electronics in computers.

Processors can now contain tiny lasers and light detectors, so they can send and receive data through small optical fibres, at speeds far exceeding the we use now. A few companies are even developing optical processors: chips that use laser light and optical switches, instead of currents and electronic transistors, to do calculations.

Read more