After two decades of trying, physicists at CERN have reported the first ever measurement of the light emitted by an antimatter atom, revealing that antihydrogen is the exact mirror image of regular hydrogen.
The result, which finally confirms what has long been predicted by the laws of physics, opens up a new way of testing Einstein’s special theory of relativity, and could help us answer one of the biggest mysteries in modern physics — why is there so much more regular matter than antimatter in the Universe?
“This represents a historic point in the decades-long efforts to create antimatter and compare its properties to those of matter,” theoretical physicist Alan Kostelecky from Indiana University, who was not involved in the study, told NPR.