Toggle light / dark theme

A Primer for Deterministic Thermodynamics and Cryodynamics

Posted in engineering, existential risks, general relativity, particle physics, philosophy, quantum physics

A Primer for Deterministic Thermodynamics and Cryodynamics

Dedicated to the Founder of Synergetics, Hermann Haken

Otto E. Rossler, Frank Kuske, Dieter Fröhlich, Hans H. Diebner, Thimo Bo¨ hl, Demetris T. Christopoulos, Christophe Letellier

Abstract The basic laws of deterministic many-body systems are summarized in the footsteps of the deterministic approach pioneered by Yakov Sinai. Two fundamental cases, repulsive and attractive, are distinguished. To facilitate comparison, long-range potentials are assumed both in the repulsive case and in the new attractive case. In Part I, thermodynamics – including the thermodynamics of irreversible processes along with chemical and biological evolution – is presented without paying special attention to the ad hoc constraint of long-range repulsion.Otto E. Rossler In Part II, the recently established new fundamental discipline of cryodynamics, based on long-range attraction, is described in a parallel format. In Part III finally, the combination (“dilute hot-plasma dynamics”) is described as a composite third sister discipline with its still largely unknown properties. The latter include the prediction of a paradoxical “double-temperature equilibrium” or at least quasi-equilibrium existing which has a promising technological application in the proposed interactive local control of hot-plasma fusion reactors. The discussion section puts everything into a larger perspective which even touches on cosmology.
Keywords: Sinai gas, chaos theory, heat death, dissipative structures, second arrow, Point Omega, Super Life, paradoxical cooling, antifriction, paradoxical acceleration, Sonnleitner numerical instability, dilute-plasma paradigm, two-temperature equilibrium, ITER, MHD, interactive plasma cooling, McGuire reactor, Hubble law, Zwicky rehabilitated, Perlmutter-Schmidt-Riess wiggle, mean cosmic temperature, van Helmont, Lavoisier, Kant, Poincaré, double-faced Sonnleitner map. (August 26, 2016)

Otto E. Rossler, Frank Kuske, Dieter Fro¨ hlich, Thimo Bo¨ hl
Division of Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tu¨ bingen, Germany

Hans H. Diebner
Department of Medical Informatics, Technical University Dresden, Blasewitzerstr. 86,
01307 Dresden, Germany

Demetris T. Christopoulos
National and Kapodistrian University of Athens, Department of Economics, Sofokleous 1 str.,
10509 Athens, Greece

Christophe Letellier
Physics Department, University of Rouen CORIA, Avenue de l’Université, 76801 Saint-Étienne-du-Rouvray, France

Full paper: http://environmental-safety.webs.com/Deterministic_Thermo_Cryo.pdf

Leave a Reply