While scientists have had success in the past printing structures like “bionic ears,” a clear path to making functional internal organs and tissue hasn’t really emerged. However, researchers at the University of Florida in Gainesville have developed a way of printing complex objects in gel, a method that could help pave the way to 3D-printed organs in the future.
The hard thing about printing intricate organic structures like blood vessels and complicated organs is that they collapse under their own weight before they solidify. The gel here, which is made of an acrylic acid polymer, acts as a scaffold to hold the structure in place during the printing process. That approach has already allowed the team to print with organic materials — and even make a replica of a human brain.
Printing in gel isn’t an entirely new idea. And, of course, the method isn’t perfect. For one thing, using inorganic gel as a scaffold can’t keep organic tissue alive. For another, printing very small objects could lead to some particles slipping through the material. However, it’s certainly a solid step forward on the way to printing organs for patients in need someday.