Toggle light / dark theme

I was born into a world in which no individual or group claimed to own the mission embodied in the Lifeboat Foundation’s two-word motto. Government agencies, charitable organizations, universities, hospitals, religious institutions — all might have laid claim to some peace of the puzzle. But safeguarding humanity? That was out of everyone’s scope. It would have been a plausible motto only for comic-book organizations such as the Justice League or the Guardians of the Universe.

Take the United Nations, conceived in the midst of the Second World War and brought into its own after the war’s conclusion. The UN Charter states that the United Nations exists:

  • to save succeeding generations from the scourge of war, which twice in our lifetime has brought untold sorrow to mankind, and
  • to reaffirm faith in fundamental human rights, in the dignity and worth of the human person, in the equal rights of men and women and of nations large and small, and
  • to establish conditions under which justice and respect for the obligations arising from treaties and other sources of international law can be maintained, and
  • to promote social progress and better standards of life in larger freedom

All of these are noble, and incredibly important, aims. But even the United Nations manages to name only one existential risk, warfare, which it is pledged to help prevent. Anyone reading this can probably cite a half dozen more.

It is both exciting and daunting to live in an age in which a group like the Lifeboat Foundation can exist outside of the realm of fantasy. It’s exciting because our awareness of possibility is so much greater than it was even a generation or two ago. And it is daunting for exactly the same reason. We can envision plausible triumphs for humanity that really do transcend our wildest dreams, or at least our most glorious fantasies as articulated a few decades ago. Likewise, that worst of all possible outcomes — the sudden and utter disappearance of our civilization, or of our species, or of life itself — now presents itself as the end result of not just one possible calamity, but of many.

I’ve spent the last few years writing about many of those plausible triumphs, while paying less attention to the possible calamities. But I’m not sure that this is a clear-cut dichotomy. Pursuing the former may ultimately provide us with the tools and resources we will need to contend with the latter. So my own personal motto becomes something of a double-edged sword. I encourage everyone to strive to “live to see it.” But maybe we also need to figure out how we can see it…to live.

With that in mind, perhaps “safeguarding humanity” takes on a double meaning, too. We must find a way for humanity to survive in the face of these very real threats. Moreover, we must find a way for humanity — the values, the accomplishments, the sense of purpose which has defined the entire human experience — to survive. And that may be the most audacious mission statement of all.

Stephen Gordon and I will be interviewing the Lifeboat Foundation’s International Spokesperson Philippe Van Nedervelde on our podcast, FastForward Radio on Feb 17, 2008 at 7:00 PM Pacific / 10:00 PM Eastern. We’ll be talking about risks and the role of Lifeboat in helping to mitigate against them.

Many of you have recently read that a research team at the University of Illinois led by Min-Feng Yu has developed a process to grow nanowires of unlimited length. The same process also allows for the construction of complex, three-dimensional nanoscale structures. If this is news to you, please refer to the links below.

It’s easy to let this news item slip past before its implications have a chance to sink in.

Professor Yu and his team have shown us a glimpse of how to make nanowire based materials that will, once the technology is developed more fully, allow for at least two very significant enhancements in materials science.

1. Nanowires that will be as long as we want them to be. The only limitations that seem to be indicated are the size of the “ink” reservoir and the size of spool that the nanowires are wound on. Scale up the ink supply and the scale up size of the spool and we’ll soon be making cables and fabric. Make the cables long enough and braid enough of them them together and the Space Elevator Games may become even more exciting to watch.

2. It should also lend itself very nicely to 3D printing of complex nanoscale structures. Actually building components that will allow for the bootstrapping of a desktop sized molecular manufacturing fab seems like it’s a lot closer than it was just a short time ago.

All of this highlights the need to more richly fund the Lifeboat Foundation in general and the Lifeboat Foundation’s NanoShield program in particular so that truly transformative technologies like these can be brought to market in a way that minimizes the risks of their powers being used for ill.

If you can, please consider donating to the Lifeboat Foundation. Every dollar helps us to safely bring a better world into being. The species you help save may be your own.

References:
http://www.news.uiuc.edu/news/08/0130nanofiber.html
http://www.sciencedaily.com/releases/2008/01/080130101732.htm
http://www3.interscience.wiley.com/cgi-bin/fulltext/117901964/PDFSTART

Last year, the Singularity Institute raised over $500,000. The World Transhumanist Association raised $50,000. The Lifeboat Foundation set a new record for the single largest donation. The Center for Responsible Nanotechnology’s finances are combined with those of World Care, a related organization, so the public can’t get precise figures. But overall, it’s safe to say, we’ve been doing fairly well. Most not-for-profit organizations aren’t funded adequately; it’s rare for charities, even internationally famous ones, to have a large full-time staff, a physical headquarters, etc.

The important question is, now that we’ve accumulated all of this money, what are we going to spend it on? It’s possible, theoretically, to put it all into Treasury bonds and forget about it for thirty years, but that would be an enormous waste of expected utility. In technology development, the earlier the money is spent (in general), the larger the effect will be. Spending $1M on a technology in the formative stages has a huge impact, probably doubling the overall budget or more. Spending $1M on a technology in the mature stages won’t even be noticed. We have plenty of case studies: Radios. TVs. Computers. Internet. Telephones. Cars. Startups.

The opposite danger is overfunding the project, commonly called “throwing money at the problem”. Hiring a lot of new people without thinking about how they will help is one common symptom. Having bloated layers of middle management is another. To an outside observer, it probably seems like we’re reaching this stage already. Hiring a Vice President In Charge Of Being In Charge doesn’t just waste money; it causes the entire organization to lose focus and distracts everyone from the ultimate goal.

I would suggest a top-down approach: start with the goal, figure out what you need, and get it. The opposite approach is to look for things that might be useful, get them, then see how you can complete a project with the stuff you’ve acquired. NASA is an interesting case study, as they followed the first strategy for a number of years, then switched to the second one.

The second strategy is useful at times, particularly when the goal is constantly changing. Paul Graham suggests using it as a strategy for personal success, because the ‘goal’ is changing too rapidly for any fixed plan to remain viable. “Personal success” in 2000 is very different from “success” in 1980, which was different from “success” in 1960. If Kurzweil’s graphs are accurate, “success” in 2040 will be so alien that we won’t even be able to recognize it.

But when the goal is clear- save the Universe, create an eternal utopia, develop new technology X- you simply need to smash through whatever problems show up. Apparently, money has been the main blocker for some time, and it looks like we’ve overcome that (in the short-term) through large-scale fundraising. There’s a large body of literature out there on how to deal with organizational problems; thousands of people have done this stuff before. I don’t know what the main blocker is now, but odds are it’s in there somewhere.

The Defense Advanced Research Projects Agency (DARPA) gave a $540,000 grant to researchers from Rice University to do a fast-tracked 9-month study on a new anti-radiation drug based on carbon nanotubes:

“More than half of those who suffer acute radiation injury die within 30 days, not from the initial radioactive particles themselves but from the devastation they cause in the immune system, the gastrointestinal tract and other parts of the body,” said James Tour, Rice’s Chao Professor of Chemistry, director of Rice’s Carbon Nanotechnology Laboratory (CNL) and principal investigator on the grant. “Ideally, we’d like to develop a drug that can be administered within 12 hours of exposure and prevent deaths from what are currently fatal exposure doses of ionizing radiation.” […]

The new study was commissioned after preliminary tests found the drug was greater than 5,000 times more effective at reducing the effects of acute radiation injury than the most effective drugs currently available. […]

The drug is based on single-walled carbon nanotubes, hollow cylinders of pure carbon that are about as wide as a strand of DNA. To form NTH, Rice scientists coat nanotubes with two common food preservatives — the antioxidant compounds butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) — and derivatives of those compounds.

An interesting side benefit of the drug might be that it could also potentially help cancer patients who are undergoing radiation treatment.

More here: Feds fund study of drug that may prevent radiation injury

Cross posted from Next big future

Since a journal article was submitted to the Royal Society of Chemistry, the U of Alberta researchers have already made the processor and unit smaller and have brought the cost of building a portable unit for genetic testing down to about $100 Cdn. In addition, these systems are also portable and even faster (they take only minutes). Backhouse, Elliott and McMullin are now demonstrating prototypes of a USB key-like system that may ultimately be as inexpensive as standard USB memory keys that are in common use – only tens of dollars. It can help with pandemic control and detecting and control tainted water supplies.

This development fits in with my belief that there should be widespread inexpensive blood, biomarker and genetic tests to help catch disease early and to develop an understanding of biomarker changes to track disease and aging development. We can also create adaptive clinical trials to shorten the development and approval process for new medical procedures


The device is now much smaller than size of a shoe-box (USB stick size) with the optics and supporting electronics filling the space around the microchip

Canadian scientists have succeeded in building the least expensive portable device for rapid genetic testing ever made. The cost of carrying out a single genetic test currently varies from hundreds to thousands of pounds, and the wait for results can take weeks. Now a group led by Christopher Backhouse, University of Alberta, Edmonton, have developed a reusable microchip-based system that costs just 500 (pounds) to build, is small enough to be portable, and can be used for point-of-care medical testing.

To keep costs down, ‘instead of using the very expensive confocal optics systems currently used in these types of devices we used a consumer-grade digital camera’, Backhouse explained.

The device can be adapted for used in many different genetic tests. ‘By making small changes to the system you could test for a person’s predisposition to cancer, carry out pharmacogenetic tests for adverse drug reactions or even test for pathogens in a water supply,’ said Backhouse.

The heart of the unit, the ‘chip,’ looks like a standard microscope slide etched with fine silver and gold lines. That microfabricated chip applies nano-biotechnologies within tiny volumes, sometimes working with only a few molecules of sample. Because of this highly integrated chip (containing microfluidics and microscale devices), the remainder of the system is inexpensive ($1,000) and fast.

There are many possible uses for such a portable genetic testing unit:

Backhouse notes that adverse drug reactions are a major problem in health care. By running a quick genetic test on a cancer patient, for example, doctors might pinpoint the type of cancer and determine the best drug and correct dosage for the individual.

Or health-care professionals can easily look for the genetic signature for a virus or E. coli – also making it useful for testing water quality.

“From a public health point of view, it would be wonderful during an epidemic to be able to do a quick test on a patient when they walk into an emergency room and be able to say, ‘you have SARS, you need to go into that (isolation) room immediately.’ ”

A family doctor might determine a person’s genetic predisposition to an illness during an office visit and advise the patient on preventative lifestyle changes.

FURTHER READING
Microfabrication technologies research at the University of Alberta

Rapid genetic analysis

In collaboration with the Glerum Lab we have been developing microchip based implementations of genetic amplification (PCR — the polymerase chain reaction) and capillary electrophoresis (CE) that are extremely fast.

- Cancer diagnostics

- Cell manipulation on a chip

- On chip PCR (polymerase chain reaction)

- Single cell PCR

- DNA Sequencing

According to ScienceDaily:

The British-American biotech company Acambis reports the successful conclusion of Phase I trials of the universal flu vaccine in humans. The universal influenza vaccine has been pioneered by researchers from VIB and Ghent University. This vaccine is intended to provide protection against all ‘A’ strains of the virus that causes human influenza, including pandemic strains. Therefore, this vaccine will not need to be renewed annually.

InfluenzaWhat would make this new vaccine different from the ones already available is that it would target M2e, a conserved region of influenza “A” strains. Since that part doesn’t constantly mutate and about 2/3 of seasonal epidemics and all pandemics are due to type “A” strains, it could be a very efficient weapon against repeats of the “Spanish Flu” (1918−1919) that killed at least 50 million people worldwide. Only the future will tell if phase II and III trials are successful.

You can learn more about the Lifeboat Foundation BioShield program here.

Reposted from Next Big Future which was advancednano.

A 582,970 base pair sequence of DNA has been synthesized.

It’s the first time a genome the size of a bacterium has chemically been synthesized that’s about 20 times longer than [any DNA molecule] synthesized before.

This is a huge increase in capability. It has broad implications for DNA nanotechnology and synthetic biology.

It is particularly relevant for the lifeboat foundation bioshield project

This means that the Venter Institute is on the brink of sythesizing a new bacterial life.

The process to synthesize and assemble the synthetic version of the M. genitalium chromosome

began first by resequencing the native M. genitalium genome to ensure that the team was starting with an error free sequence. After obtaining this correct version of the native genome, the team specially designed fragments of chemically synthesized DNA to build 101 “cassettes” of 5,000 to 7,000 base pairs of genetic code. As a measure to differentiate the synthetic genome versus the native genome, the team created “watermarks” in the synthetic genome. These are short inserted or substituted sequences that encode information not typically found in nature. Other changes the team made to the synthetic genome included disrupting a gene to block infectivity. To obtain the cassettes the JCVI team worked primarily with the DNA synthesis company Blue Heron Technology, as well as DNA 2.0 and GENEART.

From here, the team devised a five stage assembly process where the cassettes were joined together in subassemblies to make larger and larger pieces that would eventually be combined to build the whole synthetic M. genitalium genome. In the first step, sets of four cassettes were joined to create 25 subassemblies, each about 24,000 base pairs (24kb). These 24kb fragments were cloned into the bacterium Escherichia coli to produce sufficient DNA for the next steps, and for DNA sequence validation.

The next step involved combining three 24kb fragments together to create 8 assembled blocks, each about 72,000 base pairs. These 1/8th fragments of the whole genome were again cloned into E. coli for DNA production and DNA sequencing. Step three involved combining two 1/8th fragments together to produce large fragments approximately 144,000 base pairs or 1/4th of the whole genome.

At this stage the team could not obtain half genome clones in E. coli, so the team experimented with yeast and found that it tolerated the large foreign DNA molecules well, and that they were able to assemble the fragments together by homologous recombination. This process was used to assemble the last cassettes, from 1/4 genome fragments to the final genome of more than 580,000 base pairs. The final chromosome was again sequenced in order to validate the complete accurate chemical structure.

The synthetic M. genitalium has a molecular weight of 360,110 kilodaltons (kDa). Printed in 10 point font, the letters of the M. genitalium JCVI-1.0 genome span 147 pages.

On January 29th, 2008 Near Earth Object 2007 TU24 will intersect Earth’s orbit at the startlingly close proximity of only 0.0038AU — or 1.4 lunar distances from our own planet. According to the resources I reviewed this NEO represents the closest known approach to earth until 2027 — that is of course assuming no more surprises like 2007 TU24 which itself wasn’t discovered until October 11th of 2007.

It seems to me that this is an assumption we can’t afford to make. It appears that 2007 TU24 is not going to strike the planet however it is possible that it will pass through a portion of earth’s magnetosphere. The repercussions of this transit can’t at this time be predicted with any certainty though they apparently range from no effect whatsoever to potentially catastrophic changes to weather, tectonic plate movement, the oceans and more.

Some might say that we’ve no need to be concerned — that this kind of near miss (and lets be frank here — in the vastness of even our solar system 1.4 lunar distances from earth is a near miss) is a freak occurrence. Don’t be so sure. Just one day later — that’s right, on January 30th it was thought possible — one might even say reasonably likely — that another asteroid will strike our second nearest celestial neighbor, Mars.

Recent updates based upon more detailed information about the path of asteroid 2007 WD5 have concluded that the odds of an impact occurring have now dropped to one in ten thousand making an impact exceptionally unlikely. However, it should be evident that our ability to identify objects less than 100 meters across is insufficient to provide us with enough time to do anything aside from evacuating the regions likely to be impacted by a collision with an incoming NEO.

More than one expert has come out and stated that NEO’s represent one of the most pressing potential mega-disasters threatening human — or even all — life on earth, yet this is a problem that could be solved within the capabilities of our technology. Between better early detection and development of a meaningful defensive strategy it is possible to protect humanity from this threat. All we need is the funding and the mandate from the people that would secure the resources required.

PhysOrg.com is reporting that researchers at Purdue University are working to develop a system that would use a network of cell phones to track radiation in an effort to prevent terrorist attacks with dirty bombs or nuclear weapons. Tiny solid-state radiation sensors are already commercially available and the additional circuitry would not add significant bulk to portable electronic products.

The researchers tested the system and demonstrated that it is capable of detecting a weak radiation source 15 feet from the sensors. A fully developed system could cover a nation with millions of cell phones equipped with radiation sensors able to detect even light residues of radioactive material. Because cell phones already contain global positioning locators, the network of phones would serve as a large scale tracking system that would require no intervention from individual users.

In his most recent paper “Reducing the Risk of Human Extinction,” SAB member Jason G. Matheny approached the topic of human extinction from what is unfortunately a somewhat unusual angle. Jason examined the cost effectiveness of preventing humanity’s extinction due to a catastrophic asteroid impact.

Even with some rather pessimistic assumptions, his calculations showed a pretty convincing return on investment. For only about US$ 2.50 per life year saved, Matheny predicts that we could mitigate the risk of humanity being killed off by a large asteroid. Maybe it’s just me, but it sounds pretty compelling.

Matheny also made a very good point that we all should ponder when we consider how our charitable giving and taxes gets spent. “We take extraordinary measures to protect some endangered species from extinction. It might be reasonable to take extraordinary measures to protect humanity from the same.”

For more coverage on this important paper please see the October 2007 issue of Risk Analysis and a recent edition of Nature News.