Toggle light / dark theme

If you pry open one of today’s ubiquitous high-tech devices—whether a cellphone, a laptop, or an electric car—you’ll find that batteries take up most of the space inside. Indeed, the recent evolution of batteries has made it possible to pack ample power in small places.

But people still always want their devices to last even longer, or go further on a charge, so researchers work night and day to boost the power a given size can hold. Rare, but widely publicized, incidents of overheating or combustion in lithium-ion batteries have also highlighted the importance of safety in battery technology.

Now researchers at MIT and Samsung, and in California and Maryland, have developed a new approach to one of the three basic components of batteries, the . The new findings are based on the idea that a solid electrolyte, rather than the liquid used in today’s most common rechargeables, could greatly improve both device lifetime and safety—while providing a significant boost in the amount of power stored in a given space.

Read more

IMG_0424

“I am excited to introduce the first wave of TechLuxe in a form of a resin handbag with an LCD video screen. The idea is to radically bring technology to fashion, but with creative beauty within a functional beautifully designed bag.”

Read more

Possible cause of the singularity Boston Dynamics is secretive about upcoming projects, but new footage shows their robots in action—and the results are highly unsettling.

First you can see Spot, an agile autonomous quadruped ripped directly from Isaac Asimov’s nightmares, opening a door with the arm it sports instead of a face. Spot would almost be adorable the way it trots around on four legs except for the protruding face-arm that will turn the handle on your front door with its superstrength. Sleep well tonight.

Read more

https://youtube.com/watch?v=NwrjAa1SgjQ

August 17, 2015 Boston Dynamics, which Google bought in 2013, has begun testing one of its humanoid robots — those that are designed to function like humans — out in the wild. Marc Raibert, the founder of Boston Dynamics, talked about the research and showed footage of the project during a talk on Aug. 3 at the 11th Fab Lab Conference and Symposium in Cambridge, Mass.

“Out in the world is just a totally different challenge than in the lab,” Raibert said at the conference, which was organized by the Fab Foundation, a division of the Massachusetts Institute of Technology’s Center for Bits and Atoms. “You can’t predict what it’s going to be like.”

Boston Dynamics has tested its LS3 quadruped (four-legged) robot out in natural settings in the past. But humanoid robots are different — they can be much taller and have a higher center of gravity. Keeping them moving on paved asphalt is one thing, but maneuvering them through rugged terrain, which is what Boston Dynamics’ Atlas robots dealt with recently during the DARPA Robotics Challenge, can be trickier.

Read more

If you’ve ever watched someone experience virtual reality for the first time, you know it can involve screaming, flapping arms, and occasional falls.

On one level people know their bodies are safe on the stable chair, but as their minds are catapulted through outer space on a spaceship to Mars or beamed into a refugee camp in Syria —they can’t help but lose their grip on reality and go along for the ride.

In fact, our brains don’t even require photorealism for suspension of disbelief in VR. A choppy CGI rendition will cause our heart rates to increase and our palms to get sweaty when we’re riding a virtual roller coaster or standing on the edge of a virtual building looking at the ground 30 stories below.

Read more

Meanwhile there is something important going on in the fight against baldness.

As in the majority of tissues, the hair follicle has stem cells. There are two types of stem cells that are responsible for the continuous renewal of the follicles. The first type is called active stem cells and they start dividing quite easily. Stem cells of the second type are called quiescent and in case of the new hair growth they don’t start dividing as easily. At the same time, the new hair is based primarily on quiescent cells, which attracted close attention of researchers to these cells. At first people thought that baldness was due to this type of cells.

However, recent studies showed that bald men did have those quiescent cells in their follicles. The problem was that they didn’t divide at all and didn’t contribute to forming new hairs.

This means that even a bald person still has the potential to grow new hair, but because of lack of some regulatory factors quiescent cells can’t start replicating.

Elaine Fuchs was able to identify these regulatory factors in her study published in Cell. Apparently, it’s all about the transit-amplifying cells that are the progeny of the active stem cells.

Read more