Toggle light / dark theme

Exclusive trailer for Syfy’s mini series “Childhood’s End”, starring among others Mike Vogel (Under the Dome), Charles Dance (Game of thrones) and Daisy Betts (Last resort).

Syfy: http://www.syfy.com/
Syfy on Twitter: https://twitter.com/syfy

“Childhood’s End” page official: http://www.syfy.com/childhoodsend

“Childhood’s End” on Facebook: https://www.facebook.com/ChildhoodsEn…

“Childhood’s End” on Twitter: https://twitter.com/ChildhoodSyfy

Series premiere is set on December 20th 2015.

Read more

In April 2015, a paper by Chinese scientists about their attempts to edit the DNA of a human embryo rocked the scientific world and set off a furious debate. Leading scientists warned that altering the human germ line without studying the consequences could have horrific consequences. Geneticists with good intentions could mistakenly engineer changes in DNA that generate dangerous mutations and cause painful deaths. Scientists — and countries — with less noble intentions could again try to build a race of superhumans.

Human DNA is, however, merely one of many commercial targets of ethical concern. The DNA of every single organism — every plant, every animal, every bacterium — is now fair game for genetic manipulation. We are entering an age of backyard synthetic biology that should worry everybody. And it is coming about because of CRISPRs: clustered regularly interspaced short palindromic repeats.

Discovered by scientists only a few years ago, CRISPRs are elements of an ancient system that protects bacteria and other single-celled organisms from viruses, acquiring immunity to them by incorporating genetic elements from the virus invaders. CRISPRs evolved over millions of years to trim pieces of genetic information from one genome and insert it into another. And this bacterial antiviral defense serves as an astonishingly cheap, simple, elegant way to quickly edit the DNA of any organism in the lab.

Until recently, editing DNA required sophisticated labs, years of experience, and many thousands of dollars. The use of CRISPRs has changed all that. CRISPRs work by using an enzyme — Cas9 — that homes in on a specific location in a strand of DNA. The process then edits the DNA to either remove unwanted sequences or insert payload sequences. CRISPRs use an RNA molecule as a guide to the DNA target. To set up a CRISPR editing capability, a lab only needs to order an RNA fragment (costing about $10) and purchase off-the-shelf chemicals and enzymes for $30 or less.

Read more

Using a double layer of lipids facilitates assembly of DNA origami nanostructures, bringing us one step closer to future DNA nanomachines, as in this artist’s impression (credit: Kyoto University’s Institute for Integrated Cell-Material Sciences)

Kyoto University scientists in Japan have developed a method for creating larger 2-D self-assembling DNA origami nanostructures.

Current DNA origami methods can create extremely small two- and three-dimensional shapes that could be used as construction material to build nanodevices, such as nanomotors, in the future for targeted drug delivery inside the body, for example. KurzweilAI recently covered advanced methods developed by Brookhaven National Laboratory and Arizona State University’s Biodesign Institute.

Read more

Intel Corporation introduced the 6th Generation Intel® Core™ processor family, the company’s best processors ever. The launch marks a turning point in people’s relationship with computers. The 6th Gen Intel Core processors deliver enhanced performance and new immersive experiences at the lowest power levels ever and also support the broadest range of device designs – from the ultra-mobile compute stick, to 2 in 1s and huge high-definition All-in-One desktops, to new mobile workstations.

There are over 500 million computers in use today that are four to five years old or older. They are slow to wake, their batteries don’t last long, and they can’t take advantage of all the new experiences available today.

Built on the new Skylake microarchitecture on Intel’s leading 14nm manufacturing process technology.

Read more

GDF 11 has been publicised as another fountain of youth molecule, but with contradictory findings, does it live up to the hype, or could it be potentially harmful? It could be a bit of both.

Read more

Tech giant, Intel has pledged $50 million (£33 million) to quantum computing research, which could ultimately give us a supercomputer unlike any machine we have known so far.

In an open letter, CEO Brian Krzanich announced a 10-year partnership with Delft University of Technology and TNO, the Dutch Organisation for Applied Research.

Describing the “exciting possibilities” about the research he said: “Quantum computing is one of the more promising areas of long-term research we’ve been exploring in our labs, with some of the smartest engineers in the world.

Read more