Toggle light / dark theme

The few available range-extended electric car models give drivers added flexibility by using gasoline engines as onboard backup generators.

But using the range extender too often may consume a significant quantity of gasoline, somewhat offsetting the purpose of owning an electric car for some buyers.

Electric-car advocate Tom Moloughney faced that dilemma about two years ago, when he decided to buy one of the first BMW i3 electric cars in the U.S.

Imagine making the 2,710-mile trip from Philadelphia to Los Angeles using just one gallon of gas.

You might look silly doing it, but students from Université Laval, in Quebec, have theoretically made that outlandish trip possible with their prototype gasoline-powered car that gets 2,713.1 miles per gallon.

The Laval team took home the big prize at this year’s Shell Eco-marathon Americas, a competition in which university students design a prototype car using various fuels, from gasoline to hydrogen fuel cells, in an attempt to maximize efficiency on a Detroit, Michigan test track.

Tesla CEO Elon Musk says that the automaker is working on a new battery pack to come out next year which will last 1 million miles.

When talking about the economics of Tesla’s future fleet of robotaxis at the Tesla Autonomy Event yesterday, Musk emphasized that the vehicles need to be durable in order for the economics to work:

“The cars currently built are all designed for a million miles of operation. The drive unit is design, tested, and validated for 1 million miles of operation.”

This week, two companies say that their technologies were able to work together successfully broker and transport a load without any human help.

On Thursday, July 8, Starsky Robotics and Loadsmart issued an announcement about the trucking industry’s first autonomous dispatch and delivery.

The companies say that this “marks the first time an autonomous company and a digital broker have collaborated to price, book and load a shipment without any human involvement.”

Driverless cars seem straight out of the future, but thanks to developments in autonomous vehicle technology, that future could be right around the corner. Similar to the incremental adoption of electric cars — with hybrid models hitting the road first—car manufacturers have been introducing driverless features to conventional vehicles for some time now. Already on the road today we have partially autonomous vehicles, cars and trucks with cruise control, braking assistance and self-parking technology. And industry specialists predict that fully autonomous vehicles could be on the market in a matter of a few years.

The future could be here before we know it. On Monday, Fisker Inc.—the company behind the Tesla Model S-fighting EMotion picture above—announced that it had filed patents for a new type of battery technology that could put electric cars with 500-plus mile ranges and one-minute recharging times on the roads as soon as the year 2024.

While Fisker’s press release was, unsurprisingly, a tad cagey about the details of this potentially paradigm-shattering technology, the company did reveal a few bits about what its new inventions and discoveries could do. Fisker’s new power storage technology, according to the company, would allow it to build solid-state batteries packing far more surface area than existing flat thin-film solid-state electrodes can do, while also allowing for greater conductivity, allowing the batteries to work better in cold weather and charge faster overall. (Low levels of conductivity has been one of the key problems preventing the widespread adoption of solid-state batteries so far, so this could potentially be, as Michael Scott might say, a B.F.D.)

Due to the complexities of bringing the new technology to market, such as developing supply chains for some raw materials and setting up property quality control measures for them, Fisker says the technology isn’t likely to reach cars and trucks until sometime after 2023. Once it does, however, the company claims the batteries—2.5 times more power-dense than their lithium ion equivalents—could lead to electric vehicles capable of recharging in less time than it takes to fill a modern car’s gas tank, then driving more than 500 miles before needing to power up again. Oh, and the carmaker says the batteries would cost about one-third as much as li-ion ones, to boot. (That said, Fisker did mention that there are still plenty of “technical bottlenecks” between where the tech is now and where it needs to be for production use, so don’t get too excited just yet.)