Toggle light / dark theme

Scientists have taken a major step forward in harnessing machine learning to accelerate the design for better batteries: Instead of using it just to speed up scientific analysis by looking for patterns in data, as researchers generally do, they combined it with knowledge gained from experiments and equations guided by physics to discover and explain a process that shortens the lifetimes of fast-charging lithium-ion batteries.

It was the first time this approach, known as “scientific machine learning,” has been applied to cycling, said Will Chueh, an associate professor at Stanford University and investigator with the Department of Energy’s SLAC National Accelerator Laboratory who led the study. He said the results overturn long-held assumptions about how lithium-ion batteries charge and discharge and give researchers a new set of rules for engineering longer-lasting batteries.

The research, reported today in Nature Materials, is the latest result from a collaboration between Stanford, SLAC, the Massachusetts Institute of Technology and Toyota Research Institute (TRI). The goal is to bring together foundational research and industry know-how to develop a long-lived electric vehicle battery that can be charged in 10 minutes.

From flat battery to full charge in just five minutes—an Israeli start-up has developed technology it says could eliminate the “range anxiety” associated with electric cars.

Ultra-fast recharge specialists StoreDot have developed a first-generation lithium-ion that can rival the filling time of a standard car at the pump.

“We are changing the entire experience of the driver, the problem of ‘range anxiety’… that you might get stuck on the highway without energy,” StoreDot founder Doron Myersdorf said.

Researchers from the Polytechnic University of Valencia (UPV) have come up with and patented a new system for manufacturing beams that aims to revolutionize the architecture, construction and civil engineering sectors. They are manufactured with 3D-printed plastic pieces that can be assembled as if they were pieces of Lego adding a high-performance layer of concrete in the most compressed area.

Its advantages, according to its creators, are several: they weigh up to 80% less than concrete or metallic beams, which means that no heavy cranes or lorries are needed to carry and install them; they save time and money on labor and materials; and they can be printed and assembled in situ, which facilitates their installation anywhere, regardless of how difficult it is to reach. In addition to all of this, it uses recycled plastics as the raw material, giving a new life to this product and thus helping move towards more sustainable construction.

The development of these innovative beams is the result of almost three years of research. “Our goal was to propose an alternative to the current reinforced concrete beams. These are made using profiles built for the length of the piece, which requires expensive installation and are hard to transport,” says José Ramón Albiol, lecturer at the Higher Technical School of Construction Engineering (ETSIE) of the Polytechnic University of Valencia. Following numerous hours of tests and trials, the combination of 3D printing, plastics and concrete provided optimum results. And last October they patented the system.

Ultimately, Cyrille Przybyla, an aquaculture researcher at the French Research Institute for Exploitation of the Sea who led the research, dreams of designing a lunar fish farm that uses water already on the moon to help feed residents of the future Moon Village set to be established by the European Space Agency (ESA). The Lunar Hatch project is just one of around 300 ideas currently under evaluation by the ESA, and may or may not be selected for the final mission. Przybyla’… See More.


To boldly farm fish where no one has farmed fish before.