Toggle light / dark theme

However, significant roadblocks lie ahead for these start-ups, including embryonic charging infrastructure and the relatively high cost of making an electric car versus one with an internal combustion engine.


Investors are supercharging China’s largest electric vehicle start-ups to expand in the world’s largest car market.

When you think of renewable energy, what comes to mind? We’d venture to guess that wind and solar are probably near the top of the list. And yes, wind and solar are great as long as the winds are favorable and the sun is shining. But what about all those short and bleak winter days? Rainy days? Night time?

Unfavorable conditions mean that storage is an important part of any viable solution that uses renewable energy. Either the energy itself has to be stored, or else the means to produce the energy on demand must be stored.

One possible answer has been right under our noses all along — air. Regular old ambient air can be cooled and compressed into a liquid, stored in tanks, and then reheated to its gaseous state to do work.

Imagine tiny crystals that “blink” like fireflies and can convert carbon dioxide, a key cause of climate change, into fuels.

A Rutgers-led team has created ultra-small dioxide crystals that exhibit unusual “blinking” behavior and may help to produce methane and other fuels, according to a study in the journal Angewandte Chemie. The crystals, also known as nanoparticles, stay charged for a long time and could benefit efforts to develop quantum computers.

“Our findings are quite important and intriguing in a number of ways, and more research is needed to understand how these exotic crystals work and to fulfill their potential,” said senior author Tewodros (Teddy) Asefa, a professor in the Department of Chemistry and Chemical Biology in the School of Arts and Sciences at Rutgers University-New Brunswick. He’s also a professor in the Department of Chemical and Biochemical Engineering in the School of Engineering.

“We need to go to space to help us here on Earth. Satellites have played an enormous role in improving the state of the world, and will do even more”.


I’m often asked: ‘Why are you building satellites for space when there are so many problems to fix here on Earth?’ It’s a perfectly rational question. The short answer is that we need to go to space to help us here on Earth. Satellites have played an enormous role in improving the state of the world, and will do even more as an explosion of technology innovation enables large new fleets of small satellites to be deployed with radical new capabilities.

The Sustainable Development Goals (SDGs, or Global Goals), unanimously adopted at the United Nations in 2015, are a great summary of the world’s current challenges. Space is one of many important tools that can be used to help us address them. In May, the UN held a meeting on Technology Innovation and the Global Goals, and I was asked to address the role of satellites in helping the world achieve the SDGs.

The global coverage of satellites offer a unique, fact-based perspective that can help us overcome our greatest challenges. Information from these spacecraft can help us improve agricultural yields and protect habitat loss and stop deforestation. They discovered the hole in the ozone layer and their data today remains key to fighting climate change; and they’ve helped us to connect the world through internet and communication, an intangible service for millions. Satellites in space have done much for us so far and, in the future, they will offer much more.

Tesla’s made-in-China cars are leading the market when it comes to quality, according to a new survey. All while Tesla’s US-made vehicles are scoring the lowest for quality. As we reported earlier this year, Tesla ranked lowest on J.D. Power 2020 quality study, with 250 problems per 100 cars.

The quality survey was based on roughly 1,250 Tesla owners and the vast majority of respondents own a Model 3.

Researchers from the Institute of Industrial Science at The University of Tokyo designed and built specialized computer hardware consisting of stacks of memory modules arranged in a 3D-spiral for artificial intelligence (AI) applications. This research may open the way for the next generation of energy-efficient AI devices.

Machine learning is a type of AI that allows computers to be trained by example data to make predictions for new instances. For example, a smart speaker algorithm like Alexa can learn to understand your voice commands, so it can understand you even when you ask for something for the first time. However, AI tends to require a great deal of electrical energy to train, which raises concerns about adding to climate change.

Now, scientists from the Institute of Industrial Science at The University of Tokyo have developed a novel design for stacking resistive random-access memory modules with oxide semiconductor (IGZO) access transistor in a three-dimensional spiral. Having on-chip nonvolatile memory placed close to the processors makes the machine learning training process much faster and more energy-efficient. This is because electrical signals have a much shorter distance to travel compared with conventional computer hardware. Stacking multiple layers of circuits is a natural step, since training the algorithm often requires many operations to be run in parallel at the same time.

Circa 2018 :3


If you don’t like mushrooms, it might be because you haven’t tried them yet in dress or jacket form. Believe it or not, mushrooms can now be fashioned into flexible leather-like clothing, purses, pants, and even durable furniture and building bricks for a cleaner, more sustainable planet. Phil Ross and his team at the San Francisco-based MycoWorks, a group of engineers, designers, and scientists, are developing products inspired by fungi’s lattice-like “roots,” called mycelium. According to the MycoWorks website, mycelium are carbon-negative and can also be naturally dyed any color, so your mushroom dress or house can be bright purple, fuchsia, or Cerulean blue if tan seems too subtle.

According to the website of Italy’s Mogu agency, which specializes in developing and scaling-up a range of mycelium-based technologies for the production of naturally-grown biomaterials and products, mushroom-based fabric can be tweaked to be as hard as enamel and shell-like or as soft and porous as a sponge, depending on the amount of light, humidity, exchange of gas, temperature, and types of “food” the mushroom is given (hemp, straw, etc.), rendering it as the ideal creative material for whatever you envision forging.

Mogu has proven that fabric created from mycelium is non-toxic, waterproof, and fire-resistant. It can be as thin as paper for dresses and lamp shades, or incredibly thick for heavy-duty items, and in both cases, the end result is remarkably flexible and strong.