A telescope in Arizona will conduct the largest spectroscopic survey of galaxies.
Category: space
A few hundred episodes ago, I answered the question, “What is the Universe Expanding Into?” The gist of the answer is that the Universe as we understand it, isn’t really expanding into anything.
If you go in any one direction long enough, you just return to your starting point. As the Universe expands, that journey takes longer, but there’s still nothing that it’s going into.
“We don’t have the official results of that testing, but we are told it went very, very well, so we are really excited about that,” Lindsey said.
Key to SNC’s habitat design is its ability to grow in volume once it is launched into space. The Large Inflatable Fabric Environment, or LIFE, habitat can start out compact enough to fit inside an 18-foot (5.4 meters) rocket fairing but then expand to 27 feet in diameter and 27 feet long (8 by 8 m).
The House of Representatives has taken the first step toward honoring a pioneering woman in astronomy.
Most of the spacecraft in science fiction are ridiculously spacious, but real life is much less luxurious. The International Space Station (ISS) has just 388 cubic meters of habitable space, and future deep-space assignments could have astronauts serving much longer tours of duty. NASA has partnered with Sierra Nevada Corporation to explore ways to make spacecraft a bit less cramped, and the company has now completed a prototype inflatable habitat module with almost as much living space as the entire ISS.
NASA originally funded the NextSTEP-2 program to develop technologies for long-term missions like the Lunar Gateway station and a journey to Mars. The current plan is to make the Lunar Gateway a smaller modular station that will initially have just a small life support area and docking for lunar landers. The inflatable habitat shown off at Johnson Space Center this week could eventually add a lot more living areas to the Gateway and other missions.
This isn’t NASA’s first look at inflatable habitats. The agency partnered with Bigelow Aerospace to deploy a small inflatable prototype module to the ISS called the Bigelow Expandable Activity Module (BEAM). The 16 cubic meter volume of BEAM is a far cry from the Sierra Nevada mockup, though.
How do you weigh a ghost? If you’re a cosmologist, you could use… the Universe. Combine vast cosmological data with info from particle accelerators, and, it turns out, you have a pretty good scale for measuring the mass of a neutrino — also known as the ‘ghost particle’.
This is how a team of scientists, for the first time, have set an upper limit on the mass of the lightest of the three different types of neutrino.
Neutrinos are peculiar little things. They are among the most abundant subatomic particles in the Universe, similar to electrons, but without a charge and almost massless. This means they interact very rarely with normal matter; in fact, billions are passing through your body right now.
NASA just successfully demonstrated the first of three tools designed to refuel spacecraft in space, right outside of the International Space Station.
The space agency’s Robotic Refuelling Mission 3 was able to unstow a special adapter that can hold super-cold methane, oxygen or hydrogen, and insert it into a special coupler on a different fuel tank.
Future iterations of the system could one day allow us to gas up spacecraft with resources from distant worlds, such as liquid methane as fuel. And that’s a big deal, since future space explorations to far away destinations such as the Moon and Mars will rely on our ability to refuel after leaving Earth’s gravity.
Any future colonization efforts directed at the Mars all share one problem in common; their reliance on a non-existent magnetic field. Mars’ magnetosphere went dark about 4 billion years ago when it’s core solidified due to its inability to retain heat because of its small mass. We now know that Mars was quite Earth-like in its history. Deep oceans once filled the now arid Martian valleys and a thick atmosphere once retained gasses which may have allowed for the development of simple life. This was all shielded by Mars’ prehistoric magnetic field.
When Mars’ magnetic line of defense fell, much of its atmosphere was ripped away into space, its oceans froze deep into the red regolith, and any chance for life to thrive there was suffocated. The reduction of greenhouse gasses caused Mars’ temperature to plummet, freezing any remaining atmosphere to the poles. Today, Mars is all but dead. Without a magnetic field, a lethal array of charged particles from the Sun bombards Mars’ surface every day threatening the potential of hosting electronic systems as well as biological life. The lack of a magnetic field also makes it impossible for Mars to retain an atmosphere or an ozone layer, which are detrimental in filtering out UV and high energy light. This would seem to make the basic principles behind terraforming the planet completely obsolete.
I’ve read a lot of articles about the potential of supplying Mars with an artificial magnetic field. By placing a satellite equipped with technology to produce a powerful magnetic field at Mars L1 (a far orbit around Mars where gravity from the Sun balances gravity from Mars, so that the satellite always remains between Mars and the Sun), we could encompass Mars in the resulting magnetic sheath. However, even though the idea is well understood and written about, I couldn’t find a solid mathematical proof of the concept to study for actual feasibility. So I made one!
Stellarators, twisty machines that house fusion reactions, rely on complex magnetic coils that are challenging to design and build. Now, a physicist at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) has developed a mathematical technique to help simplify the design of the coils, making stellarators a potentially more cost-effective facility for producing fusion energy.
“Our main result is that we came up with a new method of identifying the irregular magnetic fields produced by stellarator coils,” said physicist Caoxiang Zhu, lead author of a paper reporting the results in Nuclear Fusion. “This technique can let you know in advance which coil shapes and placements could harm the plasma’s magnetic confinement, promising a shorter construction time and reduced costs.”
Fusion, the power that drives the sun and stars, is the fusing of light elements in the form of plasma—the hot, charged state of matter composed of free electrons and atomic nuclei—that generates massive amounts of energy. Twisty, cruller-shaped stellarators are an alternative to doughnut-shaped tokamaks that are more commonly used by scientists seeking to replicate fusion on Earth for a virtually inexhaustible supply of power to generate electricity.
SpaceX CEO Elon Musk not only wants to explore Mars, he wants to ‘nuke’ it.
In a tweet this week, Musk reiterated calls to ‘Nuke Mars!’ adding that t-shirts are ‘coming soon.’
Jarring though the idea may be, the tweet is a re-hash of an idea championed by Musk in the past that proposes using a nuclear weapon to terraform the red planet for human habitation.