Toggle light / dark theme

Astronomers scouring the cosmos for new planets have made a chance discovery, identifying the rare eclipse of two brown dwarfs.

“This is a great example of scientific serendipity,” Adam Burgasser, a co-leading author on this study and a professor of physics at UC San Diego, said in a statement. “While searching for planets, we found an eclipsing brown dwarf binary, a system that is uniquely suited for studying the fundamental physics of these faint celestial objects.”

Using data from the Hubble Space Telescope’s Cosmic Origins Spectrograph, the team was able to observe the distinctive absorption signature in the spectrum of light that passes through it, and the sight-lines of hundreds of distant quasars that pierce the volume of space occupied by the SDSS galaxies, says the university.

This lowly slime mold does a good job of characterizing the large-scale structure of the Universe over a wide range of scale, Burchett told me.

“I see how it works from a mathematical and [topological] perspective, but that doesn’t diminish my continued amazement that the slime mold-inspired method handles this difficult problem so elegantly and efficiently,” Burchett told me.

This new star only appears to be pulsating in one hemisphere of its surface.

“We’ve known theoretically that stars like this should exist since the 1980s,” said Don Kurtz, study co-author and inaugural Hunstead Distinguished Visitor at the University of Sydney from the University of Central Lancashire in Britain. “I’ve been looking for a star like this for nearly 40 years and now we have finally found one.”

Happy #InternationalWomensDay! As of March 2020, 65 women have flown in space. Of these, 38 have worked aboard the International Space Station as long-duration crew members. Women have contributed to construction of station, served as shuttle pilots and commanders, commanded station expeditions and participated in numerous spacewalks including the recent series of all-woman excursions. Women currently hold the record for the single longest spaceflight by an American and the record for cumulative spaceflight time by an American. Their ongoing achievements will contribute to NASA successfully landing the first woman and the next man on the Moon as part of the Artemis program.

But using porous TCP to print bones does have some drawbacks. Its compressive strength is much lower than that of some human load-bearing bones, such as our thighbones. Compressive strength would rise over time, but it could be years before it would match pre-operation strength levels.

3D Printing Bones for Mars?

Several other groups are working on similar approaches. At NYU School of Medicine and NYU Langone Health, scientists have been developing 3D printed scaffold implants that could help patient groups such as children with skull deform ities. Early research results show that up to 77 percent of the bone scaffolding had been absorbed and replaced by natural bone 6 months after surgery, and that the newly-grown bone was just as strong as the original.

Teleportation is no longer science fiction, says a team of Chinese scientists, after teleporting a photon particle from the Earth’s surface to an orbiting satellite 870 miles (1,400 km) away. This does not mean, however, that we are now able to beam people up and down like Star Trek’s captains James Kirk, Jean-Luc Picard, or Kathryn Janeway – that is still very much in the realm of science fiction, physicists say.

Teleportation, also known as teletransportation, is the theoretical transfer of energy or matter from one point to another instantly – without traveling through the physical space between them.

According to CollinsDictionary.com, teleportation is:

For all of science’s impressive advancements, one problem has stubbornly eluded us: Why do we have consciousness? How does inert unconscious matter give rise to the light of conscious experience? Neuroscientist Donald Hoffman has been pondering this question throughout his career. His thinking has gradually led him to a surprising possibility — that consciousness itself is fundamental to reality. Donald’s theory, however, differs from that of the growing number of other scientists and philosophers now arriving at this conclusion.

“We’ve been stuck on the same problem for centuries. It’s time to take a different approach.”

The fundamental nature of reality, Donald theorizes, is comprised of an infinite network of interacting conscious agents. Uniquely, Donald offers a precise mathematical definition of a conscious agent. He believes the theory may be used to reconstruct the universe and existing scientific discoveries purely through the interaction of these units of consciousness.

During the 1930s, venerable theoretical physicist Albert Einstein returned to the field of quantum mechanics, which his theories of relativity helped to create. Hoping to develop a more complete theory of how particles behave, Einstein was instead horrified by the prospect of quantum entanglement — something he described as “spooky action at a distance.”

Despite Einstein’s misgivings, quantum entanglement has gone on to become an accepted part of quantum mechanics. And now, for the first time ever, a team of physicists from the University of Glasgow took an image of a form of quantum entanglement (aka Bell entanglement) at work. In so doing, they managed to capture the first piece of visual evidence of a phenomenon that baffled even Einstein himself.

The paper that described their findings, titled “Imaging Bell-type nonlocal behavior,” recently appeared in the journal Science Advances. The study was led by Dr. Paul-Antoine Moreau, a Leverhulme Early Career Fellow at the University of Glasgow, and included multiple researchers from Glasgow’s School of Physics & Astronomy.