Toggle light / dark theme

WASHINGTON — SpaceX was awarded a $29.6 million contract under the National Security Space Launch Phase 2 contract that allows the U.S. Space Force to monitor and study data from the company’s commercial and civil space missions.

The one-year contract “provides early integration studies and fleet surveillance for non-national security space missions,” said the Space Force contract announcement Nov. 9.

Fleet surveillance includes access to proprietary “tools, systems, processes and launch site activities developed by the launch service provider for non-national security space missions,” said the Space Force.

The glow could help scientists determine if a subsurface ocean on Europa is a good place to look for life.


Intense radiation from the giant planet Jupiter causes the night side of its moon Europa to visibly glow in the dark – a phenomenon that could help scientists learn if it can sustain simple forms of life, according to a new study.

The findings, published Monday in the journal Nature Astronomy, were the result of experiments by NASA scientists to study how Jupiter’s radiation affects the chemistry of Europa, which is thought to harbor a subsurface ocean of water.

And though telescopes haven’t yet observed the glow, the possibility that Europa glows in the dark could be verified by two probes that will study the moon in the coming years.

Four decades of supersonic-combustion ramjet propulsion research culminated in a successful flight of the X-43A hypersonic technology demonstrator in March 2004, the first time a scramjet-powered aircraft had flown freely. After being launched by Dryden’s venerable B-52B mothership off the coast of Southern California, a modified first-stage Pegasus booster rocketed the X-43A to 95,000 feet before the X-43A separated and flew under its own scramjet power at an airspeed of Mach 6.8, or about 5,000 mph, for about 11 seconds. On Nov. 16, another identical scramjet-powered X-43A did it again, this time reaching hypersonic speeds above Mach 9.6, or about 6,800 mph, in the final flight of the X-43A project. Both flights set world airspeed records for an aircraft powered by an air-breathing engine, and proved that scramjet propulsion is a viable technology for powering future space-access vehicles and hypersonic aircraft.

When landing Apollo 11 in 1969, astronauts looked out the window for distinguishing features that they recognized from maps of the Moon and were able to steer the lander to avoid a disastrous touchdown on top of a rocky area. Now, 50 years later, the process can be automated. Distinguishing features, like known craters, boulders, or other unique surface characteristics, provide insight into surface hazards to help avoid them while landing.

NASA scientists and engineers are maturing technology for navigating and landing on planetary bodies by analyzing images during descent – a process called terrain relative navigation (TRN). This optical navigation technology is included on NASA’s newest Mars rover, Perseverance, which will test TRN when it lands on the Red Planet in 2021, paving the way for future crewed missions to the Moon and beyond. TRN was also being used during NASA’s recent Origins, Spectral Interpretation, Resources Identification, Security, Regolith Explorer (OSIRIS-REx) mission Touch-and-Go (TAG) event to collect samples of the asteroid Bennu in order to better understand the characteristics and movement of asteroids.

Since reaching Bennu in 2018, the OSIRIS-REx spacecraft has mapped and studied its surface, including its topography and lighting conditions, in preparation for TAG. Nightingale crater was chosen from four candidate sites based on its great amount of sampleable material and accessibility for the spacecraft.

A small team of astronomers have found a new way to ‘see’ the elusive dark matter halos that surround galaxies, with a new technique 10 times more precise than the previous-best method. The work is published in Monthly Notices of the Royal Astronomical Society.

Scientists currently estimate that up to 85% of the mass in the universe is effectively invisible. This ‘dark matter’ cannot be observed directly, because it does not interact with light in the same way as the ordinary matter that makes up stars, planets, and life on Earth.

So how do we measure what cannot be seen? The key is to measure the effect of gravity that the dark matter produces.

Last week, SpaceX has launched the Beta for its Starlink internet program. This space-based internet is turning out to be faster than expected, thus having the potential to give many people around the world opportunities to do things that their socio-economic situations would have never allowed them to have.

Here is the petition link: https://www.change.org/p/save-vital-industries-call-for-subsidies-on-orbital-debris-removing-satellites
Discord Link: https://discord.gg/brYJDEr
Patreon link: https://www.patreon.com/TheFuturistTom
Please follow our instagram at: https://www.instagram.com/the_futurist_tom/
For business inquires, please contact [email protected]

Centaurs are minor planets believed to have originated in the Kuiper Belt in the outer solar system. They sometimes have comet-like features such as tails and comae—clouds of dust particles and gas—even though they orbit in a region between Jupiter and Neptune where it is too cold for water to readily sublimate, or transition, directly from a solid to a gas.

Only 18 active Centaurs have been discovered since 1927, and much about them is still poorly understood. Discovering activity on Centaurs is also observationally challenging because they are faint, telescope time-intensive and because they are rare.

A team of astronomers, led by doctoral student and Presidential Fellow Colin Chandler in Northern Arizona University’s Astronomy and Planetary Science PhD program, earlier this year announced their discovery of activity emanating from Centaur 2014 OG392, a planetary object first found in 2014. They published their findings in a paper in The Astrophysical Journal Letters, “Cometary Activity Discovered on a Distant Centaur: A Nonaqueous Sublimation Mechanism.” Chandler is the lead author, working with four NAU co-authors: graduate student Jay Kueny, associate professor Chad Trujillo, professor David Trilling and Ph.D. student William Oldroyd.

A meteorite that originated on Mars billions of years ago reveals details of ancient impact events on the red planet. Certain minerals from the Martian crust in the meteorite are oxidized, suggesting the presence of water during the impact that created the meteorite. The finding helps to fill some gaps in knowledge about the role of water in planet formation.

There’s a longstanding question in about the origin of on Earth, Mars and other large bodies such as the moon. One hypothesis says that it came from asteroids and comets post-formation. But some think that water might just be one of many substances that occur naturally during the formation of planets. A new analysis of an ancient Martian adds support for this second hypothesis.

Several years ago, a pair of dark meteorites were discovered in the Sahara Desert. They were dubbed NWA 7034 and NWA 7533, where NWA stands for North West Africa and the number is the order in which meteorites are officially approved by the Meteoritical Society, an international planetary science organization. Analysis showed these meteorites are new types of Martian meteorites and are mixtures of different rock fragments.

The McDonald Laser Ranging Station, near Fort Davis, Texas, USA, uses a laser to measure the distance between the Earth and the Moon to an accuracy of 1 cm (0.39 inches). It bounces a laser off reflective targets left on the lunar surface by three US Apollo missions and two Soviet Lunokhod missions. The distance between the centres of the Earth and the Moon is 385,000 km (239,000 miles), and the laser ranging has shown that the Moon is receding from the Earth at a rate of 3.8 cm (1.5 inches) per year. This is one of the most accurate distance measurements ever made.

A team of European researchers discovered a new high-pressure mineral in a lunar meteorite which is helping to explain what happens to materials within the extreme pressures of the Earth’s mantle.

The new mineral donwilhelmsite is the first high-pressure mineral found in meteorites with application for terrestrial sediments dragged deep into the Earth mantle by plate tectonics. Mainly composed of calcium, aluminum, silicon, and oxygen atoms, donwilhelmsite was discovered within the Oued Awlitis 001 found in 2014 in the Western Sahara.

The meteorite is compositionally similar to rocks comprising the Earth’s continents. Eroded sediments from these continents are transported by wind and rivers to the oceans, and subducted into the Earth’s mantle as part of the dense oceanic crust. Once dragged to depths of about 460–700 km, their constituent minerals transform at high pressures and high temperatures existing at those depths into denser mineral phases, including the newly discovered mineral donwilhelmsite. In the terrestrial rock cycle, donwilhelmsite is therefore an important agent for transporting continental crustal sediments through the transition zone of the Earth’s mantle (460−700 km depth).