Toggle light / dark theme

A three-floor apartment building is being constructed by Peri, a formwork and scaffolding maker, with the help of a 3D construction printer.

Germany-based Peri isn’t a newcomer to the ever-growing 3D construction printing segment. The apartment building is currently being printed in Bavaria, Germany, and the project was unveiled only two months after Peri announced i t was creating Germany’s first 3D printed two-story detached home.

Unlike the first project, this upcoming three-floor apartment building will contain 4, 090 square feet of occupiable space in the form of five apartment units and a basement. The units will be available in different sizes, good for both single occupants and families, Peri’s global business development manager of 3D construction printing Jan Graumann told Business Insider in an email interview.

Circa 2015


Imagine a blimp city floating 30 miles above the scorching surface of Venus – a home for a team of astronauts studying one of the solar system’s most inhospitable planets.

NASA is currently doing just that; floating a concept that could one day see a 30-day manned mission to Earth’s closest planetary neighbor.

Eventually, the mission could involve a permanent human presence suspended above the planet.

Astronomers may have found a “Planet Nine,” but in another solar system. Will we eventually find the hypothetical Planet Nine in our own Solar System?


Even with all we’ve learned about our own Solar System, especially in the last couple of decades, researchers still face many unanswered questions. One of those questions regards the so-called Planet Nine. The Planet Nine hypothesis states that there’s a massive planet in our Solar System orbiting at a great distance from the Sun.

Nobody’s ever observed the hypothesized planet; the evidence for it lies in a cluster of bodies that orbit the Sun 250 times further out than Earth does. These objects are called e-TNOs, for extreme Trans-Neptunian Objects. According to the hypothesis, Planet Nine’s gravity is responsible for the unusual clustered orbits of these e-TNOs.

Now astronomers have found a distant solar system with its own Planet Nine, and that discovery is breathing new life into the hypothesis.

Similar findings may tell scientists about magnetic fields around exoplanets.


Scientists may have detected radio emissions from a planet orbiting a star beyond our sun for the first time.

The astronomers behind the new research used a radio telescope in the Netherlands to study three different stars known to host exoplanets. The researchers compared what they saw to observations of Jupiter, diluted as if being seen from a star system dozens of light-years away. And one star system stood out: Tau Boötes, which contains at least one exoplanet. If the detection holds up, it could open the door to better understanding the magnetic fields of exoplanets and therefore the exoplanets themselves, the researchers hope.

Using the Parkes radio telescope, Chinese astronomers have investigated an isolated pulsar known as PSR J1047−6709 and detected dozens of giant pulses during the bright state of this source. The finding is reported in a paper published December 10 on the arXiv pre-print repository.

Pulsars are highly magnetized, rotating neutron stars emitting a beam of electromagnetic radiation. They are usually detected in the form of short bursts of radio emission, however, some of them are also observed using optical, X-ray and gamma-ray telescopes. To date, most pulsars have been discovered using the Parkes Observatory in Australia.

Some pulsars showcase the so-called giant pulses (GPs)—short-duration, burst-like radio emissions from a , with energies exceeding the average pulse energy by 10 times or even much more. So far, such activity has only been detected in 16 pulsars.

The team, led by Cornell postdoctoral researcher Jake D. Turner, Philippe Zarka of the Observatoire de Paris—Paris Sciences et Lettres University and Jean-Mathias Griessmeier of the Université d’Orléans published their findings in the forthcoming research section of the journal Astronomy & Astrophysics, on Dec. 16.

“We present one of the first hints of detecting an exoplanet in the radio realm,” Turner said. “The signal is from the Tau Boötes system, which contains a and an exoplanet. We make the case for an emission by the planet itself. From the strength and polarization of the radio signal and the planet’s magnetic field, it is compatible with theoretical predictions.”

Here’s a tip.


On the 21 December solstice, the planets will look like one brilliant star as Jupiter’s and Saturn’s 12-and 29-year orbits bring them together. The last great conjunction was in May 2000, but its position in the sky meant it was difficult to see. The great conjunction of 1623 (when Galileo Galilei was still alive) was also hard to spot because, the Perth Observatory explains, it appeared close enough to the sun that it would have been “lost in the sun’s glare”.

“You’d have to go all the way back to just before dawn on 4 March 1226 to see a closer alignment between these objects visible in the night sky,” according to Patrick Hartigan, an astronomer from Rice University in Texas.