Toggle light / dark theme

One of the interesting consequences of the emergent upshift in visual systems is that all streetlights, car headlights and other external sources of lighting will no longer be needed within around a decade. This will not only make astronomers happy, since they will be able to see the dark skies again but will simplify urban infrastructure. The three convergent elements making this change of affairs come about are the following:

1) Quanta Image Sensors, whether of the SPAD or the CIS-QIS versions are expected to become widely available within 5 to 10 years. Unlike the CMOS image sensors in billions of cell-phone cameras, which only register packets of the incoming light, these sensors can register single photons of light. The most versatile of these are the QIS sensors being developed by Fossum—who also developed the CMOS sensor—wherein a single jot\.


Demonstrating single-photon sensitivity at room temperature without avalanche multiplication, QIS technology offers sub-diffraction-limited pixel sizes and many degrees of freedom in computing the reconstruction of the image to emphasize resolution, sensitivity, and motion-deblur.

Great new episode with University of Hawaii cosmologist Brent Tully who’s been mapping the local cosmos for 50 years now. This is a good one! Please have a listen.


World-renowned, University of Hawaii cosmologist Brent Tully on 50 years of mapping the nearby universe which includes our own home supercluster ‘Laniakea.’ Tully candidly assesses the state of cosmography, the science of making 3D maps of the nearby universe and speculates on when astronomers will finally map the cosmos in its entirety.

The head scientist of the US Space Force has an unusual idea for how to maintain military dominance: augmenting and upgrading human soldiers.

Speaking at an Air Force Research Laboratory event, Space Force chief scientist Joel Mozer suggested that we’re entering an era during which soldiers can become a “superhuman workforce,” according to Metro, thanks to new tech including augmented and virtual reality, sophisticated AI, and nerve stimulation.

“In the last century, Western civilization transformed from an industrial-based society to an information-based society,” Mozer said, “but today we’re on the brink of a new age: the age of human augmentation.”

Starburst galaxies, active galactic nuclei and tidal disruption events (from left) have emerged as top candidates for the dominant source of ultrahigh-energy cosmic rays.


In the 1930s, the French physicist Pierre Auger placed Geiger counters along a ridge in the Alps and observed that they would sometimes spontaneously click at the same time, even when they were up to 300 meters apart. He knew that the coincident clicks came from cosmic rays, charged particles from space that bang into air molecules in the sky, triggering particle showers that rain down to the ground. But Auger realized that for cosmic rays to trigger the kind of enormous showers he was seeing, they must carry fantastical amounts of energy — so much that, he wrote in 1939, “it is actually impossible to imagine a single process able to give to a particle such an energy.”

Upon constructing larger arrays of Geiger counters and other kinds of detectors, physicists learned that cosmic rays reach energies at least 100000 times higher than Auger supposed.

A cosmic ray is just an atomic nucleus — a proton or a cluster of protons and neutrons. Yet the rare ones known as “ultrahigh-energy” cosmic rays have as much energy as professionally served tennis balls. They’re millions of times more energetic than the protons that hurtle around the circular tunnel of the Large Hadron Collider in Europe at 99.9999991% of the speed of light. In fact, the most energetic cosmic ray ever detected, nicknamed the “Oh-My-God particle,” struck the sky in 1991 going something like 99.99999999999999999999951% of the speed of light, giving it roughly the energy of a bowling ball dropped from shoulder height onto a toe. “You would have to build a collider as large as the orbit of the planet Mercury to accelerate protons to the energies we see,” said Ralph Engel, an astrophysicist at the Karlsruhe Institute of Technology in Germany and the co-leader of the world’s largest cosmic-ray observatory, the Pierre Auger Observatory in Argentina.

The powerful image sensors at the heart of the Vera C. Rubin Observatory have just undergone successful testing. First light scheduled for 2022.


The Vera C. Rubin Observatory has taken another step towards first light, projected for some time in 2022. Its enormous 3200 megapixel camera just took its first picture during lab testing at the SLAC National Accelerator Laboratory. The camera is the largest ever built, and its unprecedented power is the driving force behind the Observatory’s ten year Legacy Survey of Space and Time (LSST).

When paired with the 8.4 meter primary mirror, the camera is an impressive, data-producing monstrosity. Its focal plane contains 189 separate charge-coupled devices (CCDs) that each capture 16 megapixels. Each 3200 megapixel image would take 378 4K ultra-high-definition TV screens to display.

Each image is so huge, that a single one captures an area of sky equivalent to 40 full moons. The team behind the camera says that the image sensors are so powerful that it’ll be able to “see” objects that are 100 million times dimmer than the naked eye could see. A SLAC press release points out that at that level of sensitivity, you could see a candle from thousands of miles away.

On Thursday, China launched the core module of its planned space station to pave the way for construction to begin.

Designed to rival the International Space Station (ISS), from which Chinese astronauts have been barred, the assembly of the facility is expected to be completed by the end of next year.


The geopolitical tensions playing out on Earth are now out of this world as nations build alliances to boldly go where no man has gone before.

The subseafloor constitutes one of the largest and most understudied ecosystems on Earth. While it is known that life survives deep down in the fluids, rocks, and sediments that make up the seafloor, scientists know very little about the conditions and energy needed to sustain that life.

An interdisciplinary research team, led from ASU and the Woods Hole Oceanographic Institution (WHOI), sought to learn more about this ecosystem and the microbes that exist in the subseafloor. The results of their findings were recently published in Science Advances, with ASU School of Earth and Space Exploration assistant professor and geobiologist Elizabeth Trembath-Reichert as lead author.

To study this type of remote ecosystem, and the microbes that inhabit it, the team chose a location called North Pond on the western flank of the mid-Atlantic Ridge, a plate boundary located along the floor of the Atlantic Ocean.

Nuclear physicists make new, high-precision measurement of the layer of neutrons that encompass the lead nucleus, revealing new information about neutron stars.

Nuclear physicists have made a new, highly accurate measurement of the thickness of the neutron “skin” that encompasses the lead nucleus in experiments conducted at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility and just published in Physical Review Letters. The result, which revealed a neutron skin thickness of .28 millionths of a nanometer, has important implications for the structure and size of neutron stars.

The protons and neutrons that form the nucleus at the heart of every atom in the universe help determine each atom’s identity and properties. Nuclear physicists are studying different nuclei to learn more about how these protons and neutrons act inside the nucleus. The Lead Radius Experiment collaboration, called PREx (after the chemical symbol for lead, Pb), is studying the fine details of how protons and neutrons are distributed in lead nuclei.