Toggle light / dark theme

Eighty-one years ago, our world-class research center in California’s Silicon Valley was born. Ground broke on Ames Research Center on Dec. 20, 1939. It was the second aeronautical laboratory established by the National Advisory Committee for Aeronautics to perform fundamental research on all things flight. From its very beginnings, Ames was a place for innovation. Tests performed in its wind tunnels transformed military aircraft during World War II and paved the way for air travel at supersonic speeds. In the 1950s and ‘60s, its researchers looked to the stars and came up with new designs and materials for spacecraft that would make human spaceflight a reality. Fast-forward to the present, and the center contributes to virtually every major agency mission through its expertise in spacecraft entry systems, robotics, aeronautics, supercomputing, and so much more! Here are things to know about Ames.

The Volatiles Investigating Polar Exploration Rover is the latest lunar exploration mission led by Ames. Launching in 2023, the mobile robot will search for water ice inside craters and other places at the Moon’s South Pole. Its survey will help pave the way for astronaut missions to the lunar surface beginning in 2024 as part of the Artemis program.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com/.

The journey to see future technology starts in 2022, when Elon Musk and SpaceX send the first Starship to Mars — beginning the preparations for the arrival of the first human explorers.

We see the evolution of space exploration, from NASA’s Artemis mission, humans landing on Mars, and the interplanetary internet system going online. To the launch of the Starshot Alpha Centauri program, and quantum computers designing plants that can survive on Mars.

On Earth, tech evolves with quantum computers and Neaulink chips. People begin living with bio-printed organs. Humans record every part of lives from birth. And inner speech recording becomes possible.

And what about predictions further out into the future, when humans become level 2 and level 3 civilizations. When NASA’s warp drive goes live, and Mars declares independence from Earth. Will there be Dyson structures built around stars to capture their energy. Will they help power computers that can take human consciousness and download it into a quantum computer core. Allowing humanity to travel further out into space.

Quotes about the future from: Arthur C. Clarke, Stephen Hawking, Albert Einstein, and Elon Musk.

Additional footage sourced from: NASA, SpaceX.

Anyone who has ever worked on a team knows that their strength lies in coordination and a shared vision. However, it is not always easy to provide that coordination and shared vision, and any team that lacks that cohesiveness becomes more of a hindrance than a help.

Science is not immune to the difficulties of running effective teams. There is plenty to be gained from more coordination between differing silos and physical locations. Recently a meeting in Chile prompted a group of scientists to propose a plan to change that. The result is a white paper that points out the potential benefits of coordinating ground, orbital and in situ based observations of objects. But more importantly, it suggests a different path forward where all of the space science community can benefit from the type of coordinated output that can only come from a cohesive team.

The suggested path laid out in the white paper began at the Planets2020 conference in Chile, hosted by the ALMA observatory. The meeting took place back in March, right before the Coronavirus outbreak began to restrict travel. At the conference, there was a significant amount of discussion focused on the capabilities of different Earth and space based observing platforms. The intention was to learn more about missions that coordinated ground and space-based observations, and to flesh out future ideas of how to replicate that coordination with new and existing platforms to make the best of their different capabilities. The lead author of the white paper, Vincent Kofman, a research chemist at Goddard Space Flight Center, took on that the task of coordinating that team and produced a paper that clearly lays out a better way to perform observations.

To date, only Americans have travelled to the Moon. On Artemis 2, that will change when the Canadian Space Agency sends one of its four astronauts on the first-ever crewed flight of NASA’s Orion capsule and the Space Launch System (SLS) rocket on a near two week test flight around the Moon.

The as yet un-assigned crewmember will become the first Canadian to travel to lunar orbit and will be one of up-to four crew on the scheduled 2023 Artemis 2 test flight — making Canada only the second nation to send one of its citizens to our closest neighbor.

Science fiction is shifting into reality. With humanity’s plans to return to the moon this decade and further ambitions to travel to Mars in the next, we need to figure out how to keep astronauts healthy for these years-long missions. One solution long championed by science fiction is suspended animation, or putting humans in a hibernation-like sleep for the duration of travel time.

We can turn to nature for guidance and a potential solution to this challenge.