Toggle light / dark theme

This op-ed originally appeared in the June 10, 2019 issue of SpaceNews magazine.

If humanity is to ever settle new planets, we will need radically new technologies; this much is obvious. But we may already have the perfect material to step up and fill the role: graphene. It is easily transported, easily manipulated, and an abundance of carbon in the galaxy could bode well for graphene, which is a carbon-based material. Its strength and versatility could well become a crucial component in colonization. For instance, spacecraft filled with advanced, massive 3D printers could ferry intrepid settlers to new corners of the galaxy, supplying a near-endless supply of material and equipment, perhaps even being used to construct homes that can withstand the conditions of other worlds.

Graphene’s discovery in 2004 sparked the flame of endless possibility within the science and technology communities due to its astounding properties. Only a single atomic layer thick and constructed in a lattice, honeycomb-like formation, graphene is nearly 200 times stronger than steel and better at conducting electricity and heat than any other conductor. It’s flexible, allows 97 percent of white light to pass through it (making it perfect for solar energy), and the list of properties continues.

SAN FRANCISCO – The United States has the advanced technology and capable workforce it needs for further space exploration. However, it lacks the focus and prioritization that assured the success of the Apollo program, Apollo flight director Gene Kranz told Senators July 9.

“We have an administration that is strongly supportive of space and willing to provide the resources,” Kranz said July 9 at a Senate Commerce science and transportation subcommittee hearing. “We have an agency charted to do the mission, top level leadership in place and a very capable workforce. But each of the segments are philosophically divided on the goal.” Without greater unity, the U.S. space exploration program “will be grounded,” he added.

Kranz was one of the NASA veterans and industry leaders who discussed the Apollo program and the benefits and challenges of future missions at the hearing, “NASA Exploration Plans: Where We’ve Been and Where We’re Going.”

“We cannot directly image what’s going on near objects like black holes and neutron stars, but studying the polarization of X-rays emitted from their surrounding environments reveals the physics of these enigmatic objects,” Paul Hertz, director of NASA’s astrophysics division, said in a statement at the time. The project, he said, “will open a new window on the universe for astronomers to peer through.”

A preliminary launch date is set for April 2021 on a Falcon 9 rocket from Launch Complex 39A in Florida. It’s unlikely it will take up the full payload of the rocket, as SpaceNews.com points out.

READ MORE: SpaceX contracted by NASA to launch black hole and neutron star research craft [TechCrunch].

Beryllium, a hard, silvery metal long used in X-ray machines and spacecraft, is finding a new role in the quest to bring the power that drives the sun and stars to Earth. Beryllium is one of the two main materials used for the wall in ITER, a multinational fusion facility under construction in France to demonstrate the practicality of fusion power. Now, physicists from the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) and General Atomics have concluded that injecting tiny beryllium pellets into ITER could help stabilize the plasma that fuels fusion reactions.

Experiments and computer simulations found that the injected granules help create conditions in the that could trigger small eruptions called edge-localized modes (ELMs). If triggered frequently enough, the tiny ELMs prevent giant eruptions that could halt fusion reactions and damage the ITER facility.

Scientists around the world are seeking to replicate fusion on Earth for a virtually inexhaustible supply of power to generate electricity. The process involves plasma, a very hot soup of free-floating electrons and , or ions. The merging of the nuclei releases a tremendous amount of energy.

From returning to the Moon to establishing outposts on Mars, NASA has the need for more power than ever before. Could nuclear fission be the solution they’ve been searching for?

Watch more Focal Point! | https://bit.ly/2J9b9LC

Demonstration Proves Nuclear Fission System Can Provide Space Exploration Power
https://www.nasa.gov/press-release/demonstration-proves-nuclear-fission-system-can-provide-space-exploration-power
“NASA and the Department of Energy’s National Nuclear Security Administration (NNSA) have successfully demonstrated a new nuclear reactor power system that could enable long-duration crewed missions to the Moon, Mars and destinations beyond.”

NASA to Test Fission Power for Future Mars Colony
https://www.space.com/37348-nasa-fission-power-mars-colony.html
“As NASA makes plans to one day send humans to Mars, one of the key technical gaps the agency is working to fill is how to provide enough power on the Red Planet’s surface for fuel production, habitats and other equipment. One option: small nuclear fission reactors, which work by splitting uranium atoms to generate heat, which is then converted into electric power.”

Ideas for new NASA mission can now include spacecraft powered by plutonium
https://www.theverge.com/2018/3/19/17138924/nasa-discovery-program-radioisotope-thermoelectric-generators-plutonium-238
“Discovery proposals can now incorporate a type of power system known as a radioisotope thermoelectric generators, or RTGs. These generators are powered by radioactive material — a type of metal called plutonium-238.”

Sign Up For The Seeker Newsletter Here — http://bit.ly/1UO1PxI
____________________
Seeker inspires us to see the world through the lens of science and evokes a sense of curiosity, optimism and adventure.