Toggle light / dark theme

Wind and solar energy are growing rapidly in the U.S. As these energy sources become a bigger part of the electricity mix, their growth raises new questions: How do solar and wind influence energy prices? And since power plants last for decades, what should policymakers and investors think about to ensure that investments in power infrastructure pay off in the future?

Our research team at the Lawrence Berkeley National Laboratory decided to look at what effect a higher share of and solar will have on these questions. In our latest study, we found that high shares of these energy resources lead to several profound changes in electric systems.

In particular, our study shows how solar and wind tend to lower energy prices, but they add new complexity for operating the grid, which has big implications for regulators. For consumers, this research is a reminder that making the grid cleaner with wind and solar is an evolving process that requires significant changes to how the power grid is currently run—but one that offers large opportunities, if we as a country can become more flexible when we use electricity.

Read more

Full of antioxidants and vitamins, tea is pretty good for you, and green tea extracts have even been used as effective carriers for cancer drugs. New research led by Swansea University has found a novel way to wring more health benefits out of the stuff, by making quantum dots from tea leaves and using them to slow the growth of lung cancer cells.

Quantum dots are semiconductor particles so small they exhibit strange electrical and optical properties, such as the ability to fluoresce in different colors, or help with certain chemical reactions. Their glowing properties mean they’re showing up in TVs and solar cells, and in medical applications as biomarkers to help doctors precisely locate tumors. They’re also being used to treat cancer, fight antibiotic-resistant bacteria and convert CO2 into liquid fuels.

The problem is, manufacturing them can be a costly and complicated process, and the end results can be toxic. So the Swansea team, along with researchers from Bharathiar University and K. S. Rangasamy College of Technology, set about making quantum dots out of humble tea leaves.

Read more

Is there enough space for all the wind turbines and solar panels to provide all our energy needs? What happens when the sun doesn’t shine and the wind doesn’t blow? Won’t renewables destabilise the grid and cause blackouts?

In a review paper last year in the high-ranking journal Renewable and Sustainable Energy Reviews, researcher Benjamin Heard and colleagues presented their case against 100 percent renewable electrical systems. They doubted the feasibility of many of the recent scenarios for high shares of renewable energy, questioning everything from whether renewables-based systems can survive with low sun and low wind, to the ability to keep the grid stable with so much variable generation.

Now, scientists have hit back with their response to the points raised by Heard and colleagues. The researchers from the Karlsruhe Institute of Technology and collaborators have analysed hundreds of studies to answer each of the apparent issues. They demonstrate that there are no roadblocks to a 100 percent renewable future.

Read more

China and India are going to build a Lunar base/colony (I’ve heard) and the Japanese (I’ve heard) want to clad the moon in solar cells and microwave the power to Earth. To different places round the globe depending on the time.


In May 2018, China wrapped up a yearlong mission inside “Lunar Palace 1,” a Beijing facility designed to help the nation prepare to but boots on the moon. See images of the experiment here. (Read our full story here.) Here: Four volunteers take the oath in front of Lunar Palace 1, a facility for conducting bio-regenerative life-support systems experiments key to setting up a lunar base, at the Beijing University for Aeronautics and Astronautics (BUAA) on May 10, 2017. A ceremony was held in the BUAA that day as eight volunteers in two groups started a 365-day experiment in Lunar Palace 1.

Read more

Summer. Blue sky. Sunshine. But you don’t notice much of it in the office or in your home, because the blinds block the view so that the heat stays outside. This scenario could soon be a thing of the past: EPFL researchers are working with Empa on a window glass that keeps out the heat in summer and at the same time allows a clear view of the outside world.

Depending on the season, windows must have a different function in order to provide sufficient comfort in offices and apartments. In summer they should keep heat away and prevent glare from the sun. In winter they should distribute the little light optimally in the room. A team led by Andreas Schüler from the Laboratory for Solar Energy and Building Physics at EPFL has recently developed a that meets all these criteria. In cooperation with Empa researchers led by Patrik Hoffmann from the Laboratory for Advanced Materials Processing in Thun, work is currently underway on their manufacture—which could soon make sun blinds redundant. Seasonal window glass reduces summer overheating and glare in buildings and ensures high and daylight input in winter. All this without impairing the view outwards through dimming or blinds.

Jing Gong, a Ph.D. student at EPFL, used Empa’s highly complex laser system in Thun to produce a so-called master form with a microstructured surface with the precision laser. Micro mirrors are then evaporated into these micro-grooves and encapsulated in a polymer film. This film can then be easily inserted into a conventional double-glazed window. The arrangement of so-called “Compound Parabolic Concentrator” (CPC) lenses is used to optimally reflect sunlight with low restrictions in visibility. While the first prototypes have been developed in the laboratory, the researchers are already working on up-scaling. In a pilot project in cooperation with BASF Switzerland, the team is working on a manufacturing process that should make it possible to produce the window glass coating consisting of millions of micro mirrors with high precision, quickly and cost-effectively. This poses a major challenge due to the very high optical quality requirements.

Read more

There’s no question that solar power is entering the mainstream, but California is about to give it a giant boost. The state’s Energy Commission is expected to approve new energy standards that would require solar panels on the roofs of nearly all new homes, condos and apartment buildings from 2020 onward. There will be exemptions for homes that either can’t fit solar panels or would be blocked by taller buildings or trees, but you’ll otherwise have to go green if your property is brand new.

The plan doesn’t require that a home reach net-zero status (where the solar power completely offsets the energy consumed in a year). However, it does provide “compliance credits” for homebuilders who install storage batteries like Tesla’s Powerwall, letting them build smaller panel arrays knowing that excess energy will be available to use off-hours.

The new standards are poised to hike construction costs by $25,000 to $30,000 (about half of which is directly due to solar), but the self-produced energy is estimated to save owners $50,000 to $60,000 in operating costs over the solar technology’s expected 25-year lifespan.

Read more

While most surveys suggest that the public generally supports wind and solar power, opposition from local communities and residents sometimes blocks or delays specific new projects.

Consider the ill-fated Cape Wind offshore project, which was slated to be powering Cape Cod by now. Although Massachusetts has some of the nation’s strongest renewable energy policies, a group of coastal homeowners in that state objected vociferously soon after Cape Wind Associates, the developer, first proposed building it in 2001. They ultimately filed more than a dozen lawsuits over 14 years, creating hassles and delays that along with opposition from other parties doomed it.

As renewable energy researchers witnessing similar storylines play out across the country, we wanted to see how much local opposition there is to existing . With funding from the Energy Department and help from our colleagues, we teamed up to undertake the largest scientific study to date on how people who live near U.S. wind farms perceive them.

Read more

Stanford researchers have developed a water-based battery that could provide a cheap way to store wind or solar energy generated when the sun is shining and wind is blowing so it can be fed back into the electric grid and be redistributed when demand is high.

The prototype manganese-hydrogen battery, reported today in Nature Energy, stands just three inches tall and generates a mere 20 milliwatt hours of electricity, which is on par with the energy levels of LED flashlights one might hang a key ring.

Despite the prototype’s diminutive output, the researchers are confident they can take this table-top technology up to an industrial-grade system that could charge and recharge up to 10,000 times, creating a grid-scale battery with a useful lifespan well in excess of a decade.

Read more

Researchers have built a new dynamic model showing how hydrogen produced with concentrated solar thermal energy can be made more continuously through a novel seasonal control strategy with ceria (CeO2) particles buffering the effect of variation in solar radiation.

A paper, “Dynamic Model of a Continuous Hydrogen Production Plant Based on CeO2 Thermochemical Cycle,” presented at the SolarPACES2017 Annual Conference, proposes using ceria not only as the redox reactant in , but also for heat storage and heat transfer media (or medium) to control the temperatures.

Hydrogen can be produced by splitting water (H2O into H2 and oxygen) at very high temperatures using concentrated solar thermal (CST) — avoiding today’s use of fossil fuels for production. Using mirrors reflecting focused sunlight onto a receiver, CST can generate very high temperatures for thermochemical processes in a solar , up to 2,000°C, and can store solar energy thermally so it can dispatch the energy when needed.

Read more