Heliogen is a startup that wants to “replace fuels with sunlight.” And the Bill Gates-backed solar startup, which has flown under the radar until today, has made a major green-energy breakthrough for heavy industry. Heliogen “has created the world’s first technology that can commercially replace fuels with carbon-free, ultra-high temperature heat from the sun.”
Category: solar power
There are different kinds of solar panels. The one most typically used is a type that generates electricity from the sun through a physical process called the photo-voltaic (PV) effect – when light exposure on certain materials generates an electric current. Another type generates electricity from heat through thermal processes – when the sun is hotter and Earth is cooler, and the difference in temperature can be converted into usable energy.
That second kind of solar panel is the one that inspired a team of researchers at Stanford University in Palo Alto, California to develop a new system that can harness energy in darkness. It’s based on the concept of using heat to generate energy but an inverse version of the solar panel. While the solar panel uses the heat difference between the sun and Earth with the Earth being the cooler side – their system makes use of the heat difference between the coolness of the night atmosphere and the Earth with the Earth being the hotter side. The study has been published in the scientific journal Joule.
Study author Shanhui Fan, Stanford electrical engineering professor, told Gizmodo:
Researchers in Sweden have created a molecule that offers a way to trap heat from the sun.
Molten salt storage in concentrated solar power plants could meet the electricity-on-demand role of coal and gas, allowing more old, fossil fuel plants to retire.
By Robert Dieterich
Scientists are testing a new, durable, recyclable and efficient material that could soon power habitats on the Moon.
Capturing infrared light for solar cell applications.
Invisible infrared light accounts for half of all solar radiation on the Earth’s surface, yet ordinary solar energy systems have limited ability in converting it to power. A breakthrough in research at KTH could change that.
A research team led by Hans Ågren, professor in theoretical chemistry at KTH Royal Institute of Technology, has developed a film that can be applied on top of ordinary solar cells, which would enable them to use infrared light in energy conversion and increase efficiency by 10 percent or more.
“We have achieved a 10 percent increase in efficiency without yet optimizing the technology,” Ågren says. “With a little more work, we estimate that a 20 to 25 percent increase in efficiency could be achieved.”
A study claims a new way to detect and attack cancer cells using technology traditionally reserved for solar power as the results showcased dramatic improvements.
The results published in Scientific Reports said that dramatic improvements were seen in light-activated fluorescent dyes for disease diagnosis, image-guided surgery and site-specific tumor treatment.
“We’ve tested this concept in breast, lung cancer and skin cancer cell lines and mouse models, and so far it’s all looking remarkably promising,” said Sophia, Michigan State University’s (MSU) biochemistry and molecular biologist.
Swedish and Chinese scientists have developed organic solar cells optimised to convert ambient indoor light to electricity. The power they produce is low, but is probably enough to feed the millions of products that the internet of things will bring online.
As the internet of things expands, it is expected that we will need to have millions of products online, both in public spaces and in homes. Many of these will be the multitude of sensors to detect and measure moisture, particle concentrations, temperature and other parameters. For this reason, the demand for small and cheap sources of renewable energy is increasing rapidly, in order to reduce the need for frequent and expensive battery replacements.
This is where organic solar cells come in. Not only are they flexible, cheap to manufacture and suitable for manufacture as large surfaces in a printing press, they have one further advantage: the light-absorbing layer consists of a mixture of donor and acceptor materials, which gives considerable flexibility in tuning the solar cells such that they are optimised for different spectra – for light of different wavelengths.
BERLIN, August 21, 2019 (Newswire.com) — The Neutrino Energy Group cooperates with a worldwide team of scientists and various international research centers, which deal with application research, the conversion of invisible radiation spectra of the sun, among other things the neutrinos (high-energy particles, which ceaselessly reach the earth) in electric power.
Is renewable energy hurting consumers?
During the last decade or so, consumers around the world have been encouraged to install solar panels on top of their houses. In certain climates, these rooftop photovoltaic installations can more than cover the electrical needs of an individual home, and many solar-equipped houses feature photovoltaic systems that wire directly into the grid. At times when the home has excess solar-generated electricity left over, this energy feeds back into the grid and helps out with the electricity needs of other energy company customers.
In a recent paper (Generating Light from Darkness), published on Joule, Stanford University researchers Aaswath P. Raman, Wei Li, and Shanhui Fan are reporting the successful creation of a device that is able to generate electricity by exploiting the difference of temperature that can be established during the night between the surrounding air and the surface of the device that is cooling itself by emitting infrared radiations towards the night sky.
In a recent paper, published on Joule, Stanford University researchers are reporting the successful creation of a device that is able to generate electricity by exploiting the difference of temperature that can be established during the night between the surrounding air and the surface of the device that is cooling itself by emitting infrared radiations towards the night sky.
The possibility to generate electricity by exploiting thermal difference is not new, what is new here is the idea of creating a temperature difference by having part of the device radiating energy into the outer space.
As shown in the graphic, the device contains a thermoelectric generator, one side exposed to the air temperature and the other in contact with an aluminum plate. This plate, like a solar panel, actually an anti-solar panel, is facing the night sky and radiates thermal energy towards the sky. This lowers the temperature of the plate, some 2 centigrades less than the lower part of the device that has the same temperature of the air. How is it possible the aluminum plate has not the same temperature of the air? Good question! Here is the trick. The aluminum plate is isolated from the ambient temperature with a transparent insulating panel that lets the radiating energy go through but blocks the heat exchange.