Toggle light / dark theme

Circa 2018


Researchers at the University of Michigan just created the world’s smallest computer (again). Their previous micro-computer, the Michigan Micro Mote, measured 2x2x4mm. It was a complete, functioning system powered by solar cell batteries. But in March this year, IBM announced a new, smaller computer, which measured 1×1 mm, and was smaller than a grain of salt. It “raised a few eyebrows at the University of Michigan.”

After all, it’s unclear if the IBM computer even count as an actual microcomputer. The IBM device lost all its programming and data as soon as it turns off, unlike the Michigan Micro Mote, which retained its programming even when it wasn’t externally powered. “It’s more of a matter of opinion whether they have the minimum functionality required,” said David Blaauw, a professor of electrical and computer engineering at University of Michigan who helped develop the University of Michigan’s newest tiny device. If the IBM machine constituted a computer, then University of Michigan would work to gain back their title: their latest microdevice measures 0.3mm per side (1/10th the size of IBM’s computer), and is smaller than a grain of rice.

The device was designed to be a precision temperature sensor that can report temperatures in clusters of cells with an error of about 0.1 degrees Celsius. “When we first made our millimeter system, we actually didn’t know exactly all the things it would be useful for. But once we published it, we started receiving dozens and dozens and dozens of inquiries,” Blaauw said. It could, for instance, measure the temperature of tumors and conduct other cancer studies, monitor oil reservoirs, conduct audio or visual surveillance, or help in “tiny snail studies.”

I recently set sail on Sunwater Marine’s Ramblin’ Rose, a 40-foot sailing yacht powered by solar panels and electric propulsion.


While we at Electrek often tend to focus on electric vehicles taking over roads, it’s important to remember that our inevitable abandonment of fossil fuels stems to all modes of transportation, whether it’s by land, air, or even the sea. I recently had the opportunity to set sail on Sunwater Marine’s Ramblin’ Rose, a 40-foot sailing yacht powered by solar panels and electric propulsion. It’s one of the only vessels of its kind on the West Coast.

It was founded by president James Richmond in 2,020 amid the global pandemic. Richmond had a little more free time to search for a boat for blue water cruising to which he could add solar.

California Institute of Technology (Caltech) has received $100 million in funding for their Space-based Solar Power Project (SSPP), which is developing technology capable of generating solar power in space and beaming it back to Earth.

Caltech describes the project as “collecting solar power in space and transmitting the energy wirelessly to Earth through microwaves enables terrestrial power availability unaffected by weather or time of day. Solar power could be continuously available anywhere on Earth.”

The Space-based Solar Power Project has been underway since at least 2013 when the first donation arrived from Donald and Brigitte Bren. The gift is now being disclosed as SSPP nears a significant milestone: a test launch of multifunctional technology-demonstrator prototypes that collect sunlight and convert it to electrical energy, transfer energy wirelessly in free-space using radio frequency (RF) electrical power, and deploy ultralight structures that will be used to integrate them.

The device offers a far simpler way of monitoring how various chemical compounds form during reactions than the methods currently available to scientists, and the team that built the “camera” says it’s already using it to improve the technology behind solar cells.

Controlling the specific order and process of molecular assembly is notoriously difficult, especially at such tiny scales. Thankfully, the scientists realized that they merely had to plunk its components into room-temperature water — along with whatever molecules they wanted to study — and it would piece itself together automatically.

“We were surprised how powerful this new tool is, considering how straightforward it is to assemble,” first study author and Cambridge chemist Kamil Sokolowski said in a press release.

China has shown off the prototype of its “Mars cruise drone” designed for surveillance work on future Mars missions, following the historic landing of a robotic rover on the Red Planet a few months ago.

The prototype of the miniature helicopter successfully passed the final acceptance, China’s National Space Science Center (CNNSC) announced on Wednesday. In the images shared by the science center, the prototype looks similar in appearance to NASA’s Ingenuity helicopter, developed for its Perseverance mission this year.

The Chinese prototype sports two rotor blades, a sensor-and-camera base, and four thin legs, but there is no solar panel at the top like Ingenuity.

Circa 2017


Transformers are found at generating stations and distribution substations. Their primary function is to reduce the high voltages used to transport electricity long distances to the lower voltages needed by homes and businesses. But today’s transformers only operate in one direction. They are poorly equipped for boosting electricity from local sources — typically wind and solar — to the higher voltages needed to mesh efficiently with the larger grid.

Beginning in 2,010 researchers at the National Science Foundation’s FREEDM Systems Center at NC State introduced the first solid state transformer. It could perform all of the functions of a traditional transformer, but could also redirect power as needed to address changes in supply and demand.

“The SST is a fundamental building block in the smart-grid concept,” says Iqbal Husain, a professor of electrical and computer engineering at the school and director of the FREEDM Center. “It can scale down voltage for use in homes and businesses, but it can also scale up voltage from solar panels or other residential-scale renewable sources in order to feed that power back into the grid. And because the SST is a smart technology, it can switch back and forth between those two functions as needed.”

Circa 2020


Since electric vehicles first started hitting the mainstream, people have been asking “why doesn’t that have a solar panel roof?” The answer has always been the same: solar panels just don’t generate that much power. That’s not a huge problem for solar racers, with their ultra-light weight and super-aerodynamic shapes, but for the minuscule daily range a solar roof would give you on your typical daily driver, you’re still gonna need to plug it in.

Ah, but what if your daily driver was the closest thing on the road to a solar racer? An EV truly designed with ludicrous levels of efficiency as the primary goal? Something so aerodynamically slippery that it makes a mockery of the production car world? Well, that’s the Aptera. And its manufacturers claim that its 180 small solar panels, making up an area of more than three square meters (32.3 sq ft), will harvest enough energy that many drivers will never have to charge it.

The top-spec Aptera can self-generate as much as 45 miles (72 km) of range per day in ideal conditions, which is more than twice the average daily mileage of American car owners. And that doesn’t have to be a terribly large amount of energy, thanks to its extreme frugality.