Toggle light / dark theme

In the summer of 1935, the physicists Albert Einstein and Erwin Schrödinger engaged in a rich, multifaceted and sometimes fretful correspondence about the implications of the new theory of quantum mechanics. The focus of their worry was what Schrödinger later dubbed entanglement: the inability to describe two quantum systems or particles independently, after they have interacted.

Until his death, Einstein remained convinced that entanglement showed how quantum mechanics was incomplete. Schrödinger thought that entanglement was the defining feature of the new physics, but this didn’t mean that he accepted it lightly. “I know of course how the hocus pocus works mathematically,” he wrote to Einstein on July 13, 1935. “But I do not like such a theory.” Schrödinger’s famous cat, suspended between life and death, first appeared in these letters, a byproduct of the struggle to articulate what bothered the pair.

The problem is that entanglement violates how the world ought to work. Information can’t travel faster than the speed of light, for one. But in a 1935 paper, Einstein and his co-authors showed how entanglement leads to what’s now called quantum nonlocality, the eerie link that appears to exist between entangled particles. If two quantum systems meet and then separate, even across a distance of thousands of lightyears, it becomes impossible to measure the features of one system (such as its position, momentum and polarity) without instantly steering the other into a corresponding state.

Read more

In principle, a wormhole-like scenario is possible, but a wormhole tends to close before objects or other matter could pass through it. As far as we know, it’s unlikely we could construct a wormhole that stays open long enough for us to get to a distant part of the universe.

That’s really the issue: Can you keep a wormhole open?

Wormholes can exist even at the quantum level, which is a very small scale, smaller than an atom. Trying to move matter through a wormhole at the classical level, the large-size level, is where it gets trickier.

Read more

Our known universe may end the same way it was created: With a big, sudden bang.

That’s according to new research from a group of Harvard physicists, who found that the destabilization of the Higgs Boson — a tiny quantum particle that gives other particles mass — could lead to a huge explosion of energy that would consume everything in the known universe.

The energy released by the event would destabilize the laws of physics and chemistry.

Read more

New developments require new materials. Until recently, these have been developed mostly by tedious experiments in the laboratory. Researchers at the Fraunhofer Institute for Algorithms and Scientific Computing SCAI in Sankt Augustin are now significantly shortening this time-consuming and cost-intensive process with their “Virtual Material Design” approach and the specially developed Tremolo-X software. By combining multi-scale models, data analysis and machine learning, it is possible to develop improved materials much more quickly. At the Hanover Trade Fair from April 23 to 27, 2018, Fraunhofer will be demonstrating how the virtual material design of the future looks.

In almost every industry, new materials are needed for new developments. Let’s take the automotive industry: while an automobile used to consist of just a handful of materials, modern cars are assembled from thousands of different materials – and demand is increasing. Whether it’s making a car lighter, getting better fuel economy or developing electric motor batteries, every new development requires finding or developing the material that has exactly the right properties. The search for the right material has often been like a guessing game, though. The candidates have usually been selected from huge material databases and then tested. Although these databases provide insight into specific performance characteristics, they usually do not go far enough into depth to allow meaningful judgments about whether a material has exactly the desired properties. To find that out, numerous laboratory tests have to be performed.

Read more

Physicists have identified a new state of matter whose structural order operates by rules more aligned with quantum mechanics than standard thermodynamic theory. In a classical material called artificial spin ice, which in certain phases appears disordered, the material is actually ordered, but in a “topological” form.

Read more

Some theories suggest there could be many more dimensions that we’re unaware of, mostly because they’re imperceptibly tiny. Now researchers have taken the search for extra dimensions down to the nanoscale, using a neutron beam to study gravitational forces more precisely than ever before.

Read more

Fiber-optic cables package everything from financial data to cat videos into light, but when the signal arrives at your local data center, it runs into a silicon bottleneck. Instead of light, computers run on electrons moving through silicon-based chips, which are less efficient than photonics. To break through, scientists have been developing lasers that work on silicon. Researchers now write that the future of silicon-based lasers may be in quantum dots.

Read more